2-D fracture mechanics problems by SGFEM

Abstract In this paper, an extensive investigation is done on Stable Generalized Finite Element Method (SGFEM) performance through the analysis of 2-D fracture mechanics problems. Condition number, Stress Intensity Factors (SIFs), global and local measures of the energy norm are used to study SGFEM conditioning and accuracy. Computational time is also briefly discussed. The method is compared with the standard Generalized/eXtended Finite Element Method (G/XFEM). Numerical experiments corroborate and complement the knowledge available in the literature so far, and demonstrate SGFEM accuracy in 2-D cracked problems. Modified Heaviside Functions, combined with other enrichment functions, are also studied in the simulations. A simple and yet generic implementation for SGFEM is described, under the Object Oriented strategy, in a open source software. The implementation can be used in 2-D and 3-D problems, and it allows to generalize the implementation of any type of enrichment function under the SGFEM approach.

[1]  Stéphane Bordas,et al.  On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM) , 2011 .

[2]  Patrick Laborde,et al.  Crack tip enrichment in the XFEM using a cutoff function , 2008 .

[3]  Yang Zeng,et al.  A Copula-based perturbation stochastic method for fiber-reinforced composite structures with correlations , 2017 .

[4]  Phillipe D. Alves,et al.  An object-oriented approach to the Generalized Finite Element Method , 2013, Adv. Eng. Softw..

[5]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[6]  K. Y. Dai,et al.  A Smoothed Finite Element Method for Mechanics Problems , 2007 .

[7]  S. Z. Feng,et al.  An accurate and efficient algorithm for the simulation of fatigue crack growth based on XFEM and combined approximations , 2018 .

[8]  R. Pitangueira,et al.  An object-oriented tridimensional self-regular boundary element method implementation , 2013 .

[9]  A. G. Sanchez-Rivadeneira,et al.  A stable generalized/eXtended FEM with discontinuous interpolants for fracture mechanics , 2019, Computer Methods in Applied Mechanics and Engineering.

[10]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[11]  Xiangyang Cui,et al.  The performance prediction and optimization of the fiber-reinforced composite structure with uncertain parameters , 2017 .

[12]  X. Cui,et al.  A coupling approach of state-based peridynamics with node-based smoothed finite element method , 2018 .

[13]  C. Duarte,et al.  Generalized finite element enrichment functions for discontinuous gradient fields , 2010 .

[14]  N. Moës,et al.  Improved implementation and robustness study of the X‐FEM for stress analysis around cracks , 2005 .

[15]  T. Fries A corrected XFEM approximation without problems in blending elements , 2008 .

[16]  S. Bordas,et al.  A robust preconditioning technique for the extended finite element method , 2011 .

[17]  Xiangmin Jiao,et al.  hp‐Generalized FEM and crack surface representation for non‐planar 3‐D cracks , 2009 .

[18]  Mohammad Malekan,et al.  Imposition of Dirichlet Boundary Conditions in Element Free Galerkin Method through an Object-Oriented Implementation , 2017 .

[19]  N. Chevaugeon,et al.  Improved crack tip enrichment functions and integration for crack modeling using the extended finite element method , 2013 .

[20]  Jian-Ying Wu,et al.  An improved stable XFEM (Is-XFEM) with a novel enrichment function for the computational modeling of cohesive cracks , 2015 .

[21]  Li Tian,et al.  Phase field crack model with diffuse description for fracture problem and implementation in engineering applications , 2019, Adv. Eng. Softw..

[22]  Ivo Babuška,et al.  A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics , 2013 .

[23]  Rong Tian,et al.  Extra-dof-free and linearly independent enrichments in GFEM , 2013 .

[24]  Phillipe D. Alves,et al.  A computational framework for a two-scale generalized/extended finite element method: Generic imposition of boundary conditions , 2017 .

[25]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[26]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[27]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[28]  R. Pitangueira,et al.  High regularity partition of unity for structural physically non-linear analysis , 2017 .

[29]  T. Belytschko,et al.  On the construction of blending elements for local partition of unity enriched finite elements , 2003 .

[30]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[31]  Felício Bruzzi Barros,et al.  Well-conditioning global–local analysis using stable generalized/extended finite element method for linear elastic fracture mechanics , 2016 .

[32]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[33]  I. Babuska,et al.  The partition of unity finite element method , 1996 .

[34]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[35]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[36]  Carlos Armando Duarte,et al.  Extraction of stress intensity factors from generalized finite element solutions , 2005 .

[37]  Felício Bruzzi Barros,et al.  Two-dimensional fracture modeling with the generalized/extended finite element method: An object-oriented programming approach , 2018, Adv. Eng. Softw..

[38]  Guirong Liu,et al.  An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids , 2009 .

[39]  A. Simone,et al.  The Orthonormalized Generalized Finite Element Method–OGFEM: Efficient and stable reduction of approximation errors through multiple orthonormalized enriched basis functions , 2015 .

[40]  T. Belytschko,et al.  Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods , 2008 .

[41]  Longfei Wen,et al.  Improved XFEM—An extra-dof free, well-conditioning, and interpolating XFEM , 2015 .

[42]  Stéphane Bordas,et al.  Strain smoothing in FEM and XFEM , 2010 .

[43]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[44]  Guirong Liu,et al.  A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems , 2009 .

[45]  E. Chatzi,et al.  Improving the conditioning of XFEM/GFEM for fracture mechanics problems through enrichment quasi-orthogonalization , 2019, Computer Methods in Applied Mechanics and Engineering.

[46]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[47]  Qinghui Zhang,et al.  Higher order stable generalized finite element method , 2014, Numerische Mathematik.

[48]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[49]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[50]  Ted Belytschko,et al.  Fast integration and weight function blending in the extended finite element method , 2009 .

[51]  M. D. C. Ferreira,et al.  An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method , 2015 .

[52]  I. Babuska,et al.  Strongly Stable Generalized Finite Element Method (SSGFEM) for a non-smooth interface problem , 2019, Computer Methods in Applied Mechanics and Engineering.

[53]  I. Babuska,et al.  Stable Generalized Finite Element Method (SGFEM) , 2011, 1104.0960.

[54]  Michel Salaün,et al.  High‐order extended finite element method for cracked domains , 2005 .

[55]  Dorival Piedade Neto,et al.  Numerical experiments with the Generalized Finite Element Method based on a flat-top Partition of Unity , 2018, Latin American Journal of Solids and Structures.

[56]  I. Babuska,et al.  Robustness in stable generalized finite element methods (SGFEM) applied to Poisson problems with crack singularities , 2016 .

[57]  Varun Gupta,et al.  Improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics , 2015 .