A stepwise fuzzy linear programming model with possibility and necessity relations

Linear programming LP is the most widely used optimization technique for solving real-life problems because of its simplicity and efficiency. Although conventional LP models require precise data, managers and decision makers dealing with real-world optimization problems often do not have access to exact values. Fuzzy sets have been used in the fuzzy LP FLP problems to deal with the imprecise data in the decision variables, objective function and/or the constraints. The imprecisions in the FLP problems could be related to 1 the decision variables; 2 the coefficients of the decision variables in the objective function; 3 the coefficients of the decision variables in the constraints; 4 the right-hand-side of the constraints; or 5 all of these parameters. In this paper, we develop a new stepwise FLP model where fuzzy numbers are considered for the coefficients of the decision variables in the objective function, the coefficients of the decision variables in the constraints and the right-hand-side of the constraints. In the first step, we use the possibility and necessity relations for fuzzy constraints without considering the fuzzy objective function. In the subsequent step, we extend our method to the fuzzy objective function. We use two numerical examples from the FLP literature for comparison purposes and to demonstrate the applicability of the proposed method and the computational efficiency of the procedures and algorithms.

[1]  T. Allahviranloo,et al.  Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution , 2009 .

[2]  Ali Ebrahimnejad Sensitivity analysis in fuzzy number linear programming problems , 2011, Math. Comput. Model..

[3]  A. Amida,et al.  Fuzzy multiobjective linear model for supplier selection in a supply chain , 2015 .

[4]  James J. Buckley,et al.  Evolutionary algorithm solution to fuzzy problems: Fuzzy linear programming , 2000, Fuzzy Sets Syst..

[5]  Etienne E. Kerre,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..

[6]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[7]  James J. Buckley,et al.  Fully Fuzzified Linear Programming I , 2007 .

[8]  H. Rommelfanger,et al.  Linear programming with fuzzy objectives , 1989 .

[9]  Hsien-Chung Wu,et al.  Duality Theory in Fuzzy Linear Programming Problems with Fuzzy Coefficients , 2003, Fuzzy Optim. Decis. Mak..

[10]  S. H. Ghodsypour,et al.  Fuzzy multiobjective linear model for supplier selection in a supply chain , 2006 .

[11]  Amelia Bilbao-Terol,et al.  Solution of a possibilistic multiobjective linear programming problem , 1999, Eur. J. Oper. Res..

[12]  Amelia Bilbao-Terol,et al.  Solving the multiobjective possibilistic linear programming problem , 1999, Eur. J. Oper. Res..

[13]  Risto Lahdelma,et al.  Fuzzy chance constrained linear programming model for optimizing the scrap charge in steel production , 2008, Eur. J. Oper. Res..

[14]  Josefa Mula,et al.  Production , Manufacturing and Logistics A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment , 2010 .

[15]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[16]  M. Arenas,et al.  A fuzzy goal programming approach to portfolio selection , 2001 .

[17]  C. Hwang,et al.  A new approach to some possibilistic linear programming problems , 1992 .

[18]  Pankaj Gupta,et al.  Bector-Chandra type duality in fuzzy linear programming with exponential membership functions , 2009, Fuzzy Sets Syst..

[19]  Hsien-Chung Wu,et al.  Using the technique of scalarization to solve the multiobjective programming problems with fuzzy coefficients , 2008, Math. Comput. Model..

[20]  Didier Dubois,et al.  Possibility theory , 2018, Scholarpedia.

[21]  Ching-Hsue Cheng,et al.  A new approach for ranking fuzzy numbers by distance method , 1998, Fuzzy Sets Syst..

[22]  T. Allahviranloo,et al.  SOLVING FULLY FUZZY LINEAR PROGRAMMING PROBLEM BY THE RANKING FUNCTION , 2008 .

[23]  Amit Kumar,et al.  A new method for solving fully fuzzy linear programming problems , 2011 .

[24]  Liang-Hsuan Chen,et al.  Fuzzy linear programming models for new product design using QFD with FMEA , 2009 .

[25]  Mehdi Dehghan,et al.  Computational methods for solving fully fuzzy linear systems , 2006, Appl. Math. Comput..

[26]  M. K. Luhandjula Fuzzy optimization: an appraisal , 1989 .

[27]  Amelia Bilbao-Terol,et al.  A fuzzy goal programming approach to portfolio selection , 2001, Eur. J. Oper. Res..

[28]  K. Ganesan,et al.  Fuzzy linear programs with trapezoidal fuzzy numbers , 2006, Ann. Oper. Res..

[29]  Zengtai Gong,et al.  Fuzzy Linear Programming with Possibility and Necessity Relation , 2010, ACFIE.

[30]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[31]  Amin Ghodousian,et al.  Fuzzy linear optimization in the presence of the fuzzy relation inequality constraints with max-min composition , 2008, Inf. Sci..

[32]  B. Julien An extension to possibilistic linear programming , 1994 .

[33]  N. Mahdavi-Amiria,et al.  Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables , 2015 .

[34]  Nezam Mahdavi-Amiri,et al.  Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables , 2007, Fuzzy Sets Syst..

[35]  Hidetomo Ichihashi,et al.  Fuzzy Programming: A Survey of Recent Developments , 1990 .

[36]  J. Buckley Possibilistic linear programming with triangular fuzzy numbers , 1988 .

[37]  Vincent Wertz,et al.  Multiobjective fuzzy linear programming problems with fuzzy decision variables , 2003, Eur. J. Oper. Res..

[38]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[39]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[40]  Nguyen Van Hop Solving linear programming problems under fuzziness and randomness environment using attainment values , 2007, Inf. Sci..

[41]  李幼升,et al.  Ph , 1989 .

[42]  Heinrich J. Rommelfanger,et al.  A general concept for solving linear multicriteria programming problems with crisp, fuzzy or stochastic values , 2007, Fuzzy Sets Syst..

[43]  Nezam Mahdavi-Amiri,et al.  Duality in fuzzy number linear programming by use of a certain linear ranking function , 2006, Appl. Math. Comput..

[44]  A. Ebrahimnejad Some new results in linear programs with trapezoidal fuzzy numbers: Finite convergence of the Ganesan and Veeramani’s method and a fuzzy revised simplex method , 2011 .

[45]  Xinwang Liu,et al.  Measuring the satisfaction of constraints in fuzzy linear programming , 2001, Fuzzy Sets Syst..

[46]  A. Kaufmann,et al.  Introduction to fuzzy arithmetic : theory and applications , 1986 .

[47]  GuptaPankaj,et al.  Bector--Chandra type duality in fuzzy linear programming with exponential membership functions , 2009 .

[48]  R. Słowiński,et al.  Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty , 1990, Theory and Decision Library.

[49]  J. Buckley Solving possibilistic linear programming , 1989 .

[50]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[51]  Hsien-Chung Wu,et al.  Optimality conditions for linear programming problems with fuzzy coefficients , 2008, Comput. Math. Appl..

[52]  Liang-Hsuan Chen,et al.  Fuzzy linear programming models for NPD using a four-phase QFD activity process based on the means-end chain concept , 2010, Eur. J. Oper. Res..

[53]  Hideo Tanaka,et al.  On Fuzzy-Mathematical Programming , 1973 .

[54]  Caroline M. Eastman,et al.  Response: Introduction to fuzzy arithmetic: Theory and applications : Arnold Kaufmann and Madan M. Gupta, Van Nostrand Reinhold, New York, 1985 , 1987, Int. J. Approx. Reason..

[55]  Yee Leung,et al.  Spatial Analysis and Planning under Imprecision , 1988 .

[56]  Jafar Razmi,et al.  Supplier selection and order allocation based on fuzzy SWOT analysis and fuzzy linear programming , 2011, Expert Syst. Appl..

[57]  RommelfangerHeinrich A general concept for solving linear multicriteria programming problems with crisp, fuzzy or stochastic values , 2007 .

[58]  Jaroslav Ramík,et al.  Duality in fuzzy linear programming with possibility and necessity relations , 2006, Fuzzy Sets Syst..

[59]  Weldon A. Lodwick,et al.  Theoretical and semantic distinctions of fuzzy, possibilistic, and mixed fuzzy/possibilistic optimization , 2007, Fuzzy Sets Syst..

[60]  Jian-Bo Yang,et al.  On the centroids of fuzzy numbers , 2006, Fuzzy Sets Syst..

[61]  Jie Lu,et al.  Formulation of fuzzy linear programming problems as four-objective constrained optimization problems , 2003, Appl. Math. Comput..

[62]  Etienne E. Kerre,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..

[63]  Ebrahim Nasrabadi,et al.  Fully fuzzified linear programming, solution and duality , 2006, J. Intell. Fuzzy Syst..