Nanostructure of the Ionic Liquid-Graphite Stern Layer.

Ionic liquids (ILs) are attractive solvents for devices such as lithium ion batteries and capacitors, but their uptake is limited, partially because their Stern layer nanostructure is poorly understood compared to molecular solvents. Here, in situ amplitude-modulated atomic force microscopy has been used to reveal the Stern layer nanostructure of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIm TFSI)-HOPG (highly ordered pyrolytic graphite) interface with molecular resolution. The effect of applied surface potential and added 0.1 wt/wt % Li TFSI or EMIm Cl on ion arrangements is probed between ±1 V. For pure EMIm TFSI at open-circuit potential, well-defined rows are present on the surface formed by an anion-cation-cation-anion (A-C-C-A) unit cell adsorbed with like ions adjacent. As the surface potential is changed, the relative concentrations of cations and anions in the Stern layer respond, and markedly different lateral ion arrangements ensue. The changes in Stern layer structure at positive and negative potentials are not symmetrical due to the different surface affinities and packing constraints of cations and anions. For potentials outside ±0.4 V, images are featureless because the compositional variation within the layer is too small for the AFM tip to detect. This suggests that the Stern layer is highly enriched in either cations or anions (depending on the potential) oriented upright to the surface plane. When Li(+) or Cl(-) is present, some Stern layer ionic liquid cations or anions (respectively) are displaced, producing starkly different structures. The Stern layer structures elucidated here significantly enhance our understanding of the ionic liquid electrical double layer.

[1]  A. Soper,et al.  Structure of molten 1,3-dimethylimidazolium chloride using neutron diffraction , 2003 .

[2]  J. Israelachvili Intermolecular and surface forces , 1985 .

[3]  Rob Atkin,et al.  Adsorbed and near surface structure of ionic liquids at a solid interface. , 2013, Physical chemistry chemical physics : PCCP.

[4]  Tamas Szabo,et al.  Particle aggregation mechanisms in ionic liquids. , 2014, Physical chemistry chemical physics : PCCP.

[5]  C. Hardacre,et al.  Liquid structure of the ionic liquid, 1-methyl-4-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide determined from neutron scattering and molecular dynamics simulations. , 2008, The journal of physical chemistry. B.

[6]  Katrin Forster-Tonigold,et al.  Toward the microscopic identification of anions and cations at the ionic liquid|Ag(111) interface: a combined experimental and theoretical investigation. , 2013, ACS nano.

[7]  Kenneth R. Seddon,et al.  Ionic liquids. Green solvents for the future , 2000 .

[8]  T. Kirchner,et al.  Electrical double layer in ionic liquids : structural transitions from multilayer to monolayer structure at the interface , 2013 .

[9]  B. Roling,et al.  The Differential Capacitance of Ionic Liquid / Metal Electrode Interfaces – A Critical Comparison of Experimental Results with Theoretical Predictions , 2013 .

[10]  T. Welton Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. , 1999, Chemical reviews.

[11]  R. Atkin,et al.  Ionic liquid lubrication: influence of ion structure, surface potential and sliding velocity. , 2013, Physical chemistry chemical physics : PCCP.

[12]  Lars Kloo,et al.  Ionic liquid electrolytes for dye-sensitized solar cells. , 2008, Dalton transactions.

[13]  A. Soper,et al.  Liquid structure of 1, 3-dimethylimidazolium salts , 2003 .

[14]  C. Quate,et al.  Atomic resolution imaging of a nonconductor by atomic force microscopy , 1987 .

[15]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .

[16]  T. Waldmann,et al.  Imaging an ionic liquid adlayer by scanning tunneling microscopy at the solid|vacuum interface. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  Sergei V. Kalinin,et al.  Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite. , 2013, Nano letters.

[18]  A. Prowald,et al.  Electrodeposition from Ionic Liquids: Interface Processes, Ion Effects, and Macroporous Structures , 2012 .

[19]  F. Endres,et al.  LiTFSI in 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide: a possible electrolyte for ionic liquid based lithium ion batteries. , 2015, Physical chemistry chemical physics : PCCP.

[20]  H. Gaub,et al.  Direct Visualization of Surfactant Hemimicelles by Force Microscopy of the Electrical Double-Layer , 1994 .

[21]  O. Stern ZUR THEORIE DER ELEKTROLYTISCHEN DOPPELSCHICHT , 1924, Zeitschrift für Elektrochemie und angewandte physikalische Chemie.

[22]  R. Atkin,et al.  At the interface: solvation and designing ionic liquids. , 2010, Physical chemistry chemical physics : PCCP.

[23]  E. Wanless,et al.  Adsorbed and near-surface structure of ionic liquids determines nanoscale friction. , 2013, Chemical communications.

[24]  M. Gouy,et al.  Sur la constitution de la charge électrique à la surface d'un électrolyte , 1910 .

[25]  C. Hardacre,et al.  Structure and solvation in ionic liquids. , 2007, Accounts of chemical research.

[26]  R. Atkin,et al.  AFM and STM Studies on the Surface Interaction of [BMP]TFSA and [EMIm]TFSA Ionic Liquids with Au(111) , 2009 .

[27]  Gebo Pan,et al.  2D phase transition of PF6 adlayers at the electrified ionic liquid/Au(111) interface , 2006 .

[28]  C. Drummond,et al.  Protic ionic liquids: solvents with tunable phase behavior and physicochemical properties. , 2006, The journal of physical chemistry. B.

[29]  A. Kornyshev,et al.  Three-Dimensional Double Layers , 2014 .

[30]  T. Albrecht,et al.  Layering and shear properties of an ionic liquid, 1-ethyl-3-methylimidazolium ethylsulfate, confined to nano-films between mica surfaces. , 2010, Physical chemistry chemical physics : PCCP.

[31]  R. Atkin,et al.  Ion structure controls ionic liquid near-surface and interfacial nanostructure , 2014, Chemical science.

[32]  Tamar L Greaves,et al.  Protic ionic liquids: properties and applications. , 2008, Chemical reviews.

[33]  C. Hardacre,et al.  Small angle neutron scattering from 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids ([C(n)mim][PF(6)], n=4, 6, and 8). , 2010, The Journal of chemical physics.

[34]  Francesco Stellacci,et al.  Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. , 2010, Nature nanotechnology.

[35]  R. Atkin,et al.  3-Dimensional atomic scale structure of the ionic liquid-graphite interface elucidated by AM-AFM and quantum chemical simulations. , 2014, Nanoscale.

[36]  A. J. Barker Atlas of Optical Transforms , 1976 .

[37]  T. Welton,et al.  Self-assembly in the electrical double layer of ionic liquids. , 2011, Chemical communications.

[38]  S. Alavi,et al.  Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient. , 2008, The Journal of chemical physics.

[39]  P. Madden,et al.  Ion adsorption at a metallic electrode: an ab initio based simulation study , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  R. Atkin,et al.  The interface ionic liquid(s)/electrode(s): in situ STM and AFM measurements. , 2012, Faraday discussions.

[41]  A. Kornyshev,et al.  Double layer in ionic liquids: the nature of the camel shape of capacitance , 2010 .

[42]  J. Wilkes A short history of ionic liquids—from molten salts to neoteric solvents , 2002 .

[43]  H. Helmholtz,et al.  Studien über electrische Grenzschichten , 1879 .

[44]  A. Prowald,et al.  Do solvation layers of ionic liquids influence electrochemical reactions? , 2010, Physical chemistry chemical physics : PCCP.

[45]  David T. Limmer,et al.  The electric double layer has a life of its own , 2014, 1404.0343.

[46]  R. H. Amirov,et al.  Molecular dynamics simulation of the electrical double layer in ionic liquids , 2013 .

[47]  O. Y. Fajardo,et al.  Electrotunable Lubricity with Ionic Liquid Nanoscale Films , 2015, Scientific Reports.

[48]  H. Gaub,et al.  Molecular Organization of Surfactants at Solid-Liquid Interfaces , 1995, Science.

[49]  Ricardo Garcia,et al.  Amplitude Modulation Atomic Force Microscopy , 2010 .

[50]  J. Lopes,et al.  Complex Structure of Ionic Liquids. Molecular Dynamics Studies with Different Cation–Anion Combinations , 2014 .

[51]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[52]  S. Perkin Ionic liquids in confined geometries. , 2012, Physical chemistry chemical physics : PCCP.

[53]  B. Conway,et al.  The Double layer , 1980 .

[54]  R. Atkin,et al.  Effect of alkyl chain length and anion species on the interfacial nanostructure of ionic liquids at the Au(111)-ionic liquid interface as a function of potential. , 2013, Physical chemistry chemical physics : PCCP.

[55]  R. Atkin,et al.  An ionic liquid lubricant enables superlubricity to be "switched on" in situ using an electrical potential. , 2014, Chemical communications.

[56]  M. Roos,et al.  At the ionic liquid|metal interface: structure formation and temperature dependent behavior of an ionic liquid adlayer on Au(111). , 2013, Physical chemistry chemical physics : PCCP.

[57]  H. Heinz,et al.  Facet Recognition and Molecular Ordering of Ionic Liquids on Metal Surfaces , 2013 .

[58]  A. Pádua,et al.  Nanostructural organization in ionic liquids. , 2006, The journal of physical chemistry. B.

[59]  Peter Spijker,et al.  Direct visualization of single ions in the Stern layer of calcite. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[60]  A. Kornyshev,et al.  Erratum: Double Layer in Ionic Liquids: Overscreening versus Crowding [Phys. Rev. Lett. 106, 046102 (2011)] , 2012 .

[61]  E. Lust,et al.  In situ STM studies of Bi(111)|1-ethyl-3-methylimidazolium tetrafluoroborate + 1-ethyl-3-methylimidazolium iodide interface , 2014 .

[62]  A. Kornyshev,et al.  Ionic liquids at electrified interfaces. , 2014, Chemical reviews.

[63]  R. Atkin,et al.  Effect of dissolved LiCl on the ionic liquid-Au(111) electrical double layer structure. , 2012, Chemical communications.

[64]  P. Madden,et al.  Potential-induced ordering transition of the adsorbed layer at the ionic liquid/electrified metal interface. , 2010, The journal of physical chemistry. B.

[65]  K. R. Seddon,et al.  IONIC LIQUIDS UnCOILed , 2013 .

[66]  Alexei A Kornyshev,et al.  Double-layer in ionic liquids: paradigm change? , 2007, The journal of physical chemistry. B.

[67]  Jiawei Yan,et al.  Double layer of Au(100)/ionic liquid interface and its stability in imidazolium-based ionic liquids. , 2009, Angewandte Chemie.

[68]  S. Baldelli Probing electric fields at the ionic liquid-electrode interface using sum frequency generation spectroscopy and electrochemistry. , 2005, The journal of physical chemistry. B.

[69]  O. Magnussen,et al.  Potential-Dependent Adlayer Structure and Dynamics at the Ionic Liquid/Au(111) Interface: A Molecular-Scale In Situ Video-STM Study. , 2015, Angewandte Chemie.

[70]  E. di Cola,et al.  Nanoscale segregation in room temperature ionic liquids. , 2007, The journal of physical chemistry. B.

[71]  A. Kornyshev,et al.  Double layer in ionic liquids: overscreening versus crowding. , 2010, Physical review letters.

[72]  R. Atkin,et al.  Effect of Cation Alkyl Chain Length and Anion Type on Protic Ionic Liquid Nanostructure , 2014 .