Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber

The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

[1]  F. Wise,et al.  Self-similar evolution of parabolic pulses in a laser. , 2004, Physical review letters.

[2]  Frank W. Wise,et al.  High‐energy femtosecond fiber lasers based on pulse propagation at normal dispersion , 2008 .

[3]  Almantas Galvanauskas,et al.  Effectively Single-Mode Chirally-Coupled Core Fiber , 2007 .

[4]  J V Moloney,et al.  Nonlinear optical pulse propagation simulation: from Maxwell's to unidirectional equations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  I. Duling Subpicosecond all-fibre erbium laser , 1991 .

[6]  Francesco Poletti,et al.  Description of ultrashort pulse propagation in multimode optical fibers , 2008 .

[7]  J Nathan Kutz,et al.  Nonlinear mode-coupling for passive mode-locking: application of waveguide arrays, dual-core fibers, and/or fiber arrays. , 2005, Optics express.

[8]  Björn Sandstede,et al.  Theory of passive harmonic mode-locking using waveguide arrays. , 2008, Optics express.

[9]  Almantas Galvanauskas,et al.  Ultrafast pulse sources based on multi-mode optical fibers , 2000 .

[10]  W. Brocklesby,et al.  Numerical study of nonlinear interactions in a multimode waveguide. , 2007, Optics express.

[11]  D. Marcuse Theory of dielectric optical waveguides , 1974 .

[12]  J W Nicholson,et al.  Spatially and spectrally resolved imaging of modal content in large-mode-area fibers. , 2008, Optics express.

[13]  J. Kutz,et al.  Theory and simulation of passive modelocking dynamics using a long-period fiber grating , 2003 .

[14]  Frank W. Wise,et al.  Dissipative solitons in normal-dispersion fiber lasers , 2008 .

[15]  H. Haus,et al.  A theory of forced mode locking , 1975, IEEE Journal of Quantum Electronics.

[16]  Todd Kapitula,et al.  Stability of pulses in the master mode-locking equation , 2002 .

[17]  J. Gordon,et al.  Solitons in Optical Fibers: Fundamentals and Applications , 2006 .

[18]  Andy Chong,et al.  All-normal-dispersion femtosecond fiber laser. , 2006, Optics express.

[19]  J. Nathan Kutz,et al.  Operating regimes, split-step modeling, and the Haus master mode-locking model , 2009 .

[20]  Hermann A. Haus,et al.  Additive-pulse modelocking in fiber lasers , 1994 .

[21]  M. W. Phillips,et al.  SELFSTARTING, PASSIVELY MODELOCKED ERBIUM FIBRE RING LASER BASED ON THE AMPLIFYING SAGNAC SWITCH , 1991 .

[22]  J. Judkins,et al.  Nonlinear Pulse Propagation In Long Period Fiber Gratings , 1997, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[23]  H. Haus,et al.  77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. , 1993, Optics letters.

[24]  Thomas Schreiber,et al.  High-energy femtosecond photonic crystal fiber laser. , 2010, Optics letters.

[25]  Nail Akhmediev,et al.  Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion , 1997 .

[26]  F. W. Wise,et al.  Area theorem and energy quantization for dissipative optical solitons , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[27]  Mode-locking of fiber lasers via nonlinear mode-coupling , 2005 .

[28]  L. Goldberg,et al.  Single-mode operation of a coiled multimode fiber amplifier. , 2000, Optics letters.

[29]  Ammar Hideur,et al.  Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser , 2002, nlin/0410025.

[30]  F. Kärtner,et al.  Solitary-pulse stabilization and shortening in actively mode-locked lasers , 1995 .

[31]  F. Wise,et al.  Femtosecond fiber lasers with pulse energies above 10 nJ. , 2005, Optics letters.

[32]  B. Crosignani,et al.  Soliton propagation in multimode optical fibers. , 1981, Optics letters.

[33]  F. Wise,et al.  High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror. , 2002, Optics letters.

[34]  Todd Kapitula,et al.  The Evans function for nonlocal equations , 2004 .

[35]  François Sanchez,et al.  Multistability and hysteresis phenomena in passively mode-locked fiber lasers , 2005 .

[36]  Almantas Galvanauskas,et al.  Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber , 2011, Optics express.

[37]  H. Haus,et al.  Self-starting additive pulse mode-locked erbium fibre ring laser , 1992 .

[38]  M. Dennis,et al.  High repetition rate figure eight laser with extracavity feedback , 1992 .

[39]  Frank W. Wise,et al.  Properties of normal-dispersion femtosecond fiber lasers , 2008 .

[40]  J. Limpert,et al.  Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. , 2004, Optics express.

[41]  P. Grelu,et al.  Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Jens Limpert,et al.  Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers. , 2009, Optics letters.

[43]  J. Nathan Kutz,et al.  Mode-Locked Soliton Lasers , 2006, SIAM Rev..

[44]  J. Proctor,et al.  Passive mode-locking by use of waveguide arrays. , 2005, Optics letters.

[45]  F. Wise,et al.  Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. , 2009, Optics letters.

[46]  F. Krausz,et al.  Kerr lens mode locking. , 1992, Optics letters.

[47]  Shu Namiki,et al.  Energy rate equations for mode-locked lasers , 1997 .

[48]  A. Komarov,et al.  Quintic complex Ginzburg-Landau model for ring fiber lasers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  H. Haus Mode-locking of lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[50]  Khanh Kieu,et al.  Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber. , 2010, Optics letters.