Aerosol optical depth retrievals at the Izaña Atmospheric Observatory from 1941 to 2013 by using artificial neural networks

Abstract. This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izana Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July–August–September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984–2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004–2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations  >  85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.

[1]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation and on Dust in the Air , 1929 .

[2]  G. Shaw Aerosols at Mauna Loa: Optical Properties , 1979 .

[3]  Yoram J. Kaufman,et al.  Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements , 1994 .

[4]  Howard B. Demuth,et al.  Neutral network toolbox for use with Matlab , 1995 .

[5]  H. DeBruin,et al.  A series of global radiation at Wageningen for 1928-1992 , 1995 .

[6]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[7]  John R. Lanzante,et al.  Resistant, Robust and Non-Parametric Techniques for the Analysis of Climate Data: Theory and Examples, Including Applications to Historical Radiosonde Station Data , 1996 .

[8]  Martin T. Hagan,et al.  Gauss-Newton approximation to Bayesian learning , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[9]  Mohamed Mohandes,et al.  Estimation of global solar radiation using artificial neural networks , 1998 .

[10]  Martin Wild,et al.  Means and Trends of Shortwave Irradiance at the Surface Estimated from Global Energy Balance Archive Data. , 1998 .

[11]  Michael Y. Hu,et al.  Forecasting with artificial neural networks: The state of the art , 1997 .

[12]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[13]  C. Wehrli,et al.  Calibrations of filter radiometers for determination of atmospheric optical depth , 2000 .

[14]  Paul Ginoux,et al.  Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the NIMBUS-7 TOMS Absorbing Aerosol Product , 2001 .

[15]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[16]  Gerald Stanhill,et al.  Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences , 2001 .

[17]  C. J. Butler,et al.  Sunshine records from Ireland: cloud factors and possible links to solar activity and cosmic rays , 2001 .

[18]  Joseph A. Jervase,et al.  Solar radiation estimation using artificial neural networks , 2002 .

[19]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[20]  M. Wetzel,et al.  Stratocumulus properties retrieval method from NOAA-AVHRR data based on the discretization of cloud parameters , 2002 .

[21]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[22]  Coskun Özkan,et al.  The comparison of activation functions for multispectral Landsat TM image classification , 2003 .

[23]  B. Yegnanarayana,et al.  Artificial Neural Networks , 2004 .

[24]  Gabriel López,et al.  Selection of input parameters to model direct solar irradiance by using artificial neural networks , 2004 .

[25]  C. Long,et al.  From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth's Surface , 2005, Science.

[26]  Uwe Feister,et al.  Reconstruction of daily solar UV irradiation by an artificial neural network (ANN) , 2006, SPIE Remote Sensing.

[27]  A. Ohmura Observed Long-Term Variations of Solar Irradiance at the Earth’s Surface , 2007 .

[28]  J. Martín-Vide,et al.  Recent spatial and temporal variability and trends of sunshine duration over the Iberian Peninsula from a homogenized data set , 2007 .

[29]  U. Feister,et al.  Reconstruction of daily solar UV irradiation from 1893 to 2002 in Potsdam, Germany , 2007, International journal of biometeorology.

[30]  J. C. Perez,et al.  Remote Sensing of Water Cloud Parameters Using Neural Networks , 2007 .

[31]  Weine Josefsson,et al.  Long-term solar UV radiation reconstructed by ANN modelling with emphasis on spatial characteristics of input data , 2008 .

[32]  Lucas Alados-Arboledas,et al.  Using a Sky Imager for aerosol characterization , 2008 .

[33]  Martin Wild,et al.  Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land‐based hydrological cycle , 2008 .

[34]  Martin Wild,et al.  Global dimming and brightening: A review , 2009 .

[35]  Nels S. Laulainen,et al.  Global Dimming and Brightening Versus Atmospheric Column Transparency, Europe 1906-2007 , 2009 .

[36]  Cyril Voyant,et al.  Solar Radiation Forecasting Using Ad-Hoc Time Series Preprocessing and Neural Networks , 2009, ICIC.

[37]  Diofantos G. Hadjimitsis,et al.  Comparison of aerosol optical thickness with in situ visibility data over Cyprus , 2010 .

[38]  Emilio Cuevas Agulló Estudio del comportamiento del ozono troposférico en el observatorio de Izaña (Tenerife) y su relación con la dinámica atmosférica , 2011 .

[39]  N. Pérez,et al.  Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer , 2011 .

[40]  M. Chin,et al.  Dust optical properties over North Africa and Arabian Peninsula derived from the AERONET dataset , 2011 .

[41]  A. Uchiyama,et al.  Decadal changes in aerosol optical thickness and single scattering albedo estimated from ground‐based broadband radiometers: A case study in Japan , 2011 .

[42]  David Pozo-Vázquez,et al.  Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artifi , 2011 .

[43]  Hao Yu,et al.  Levenberg—Marquardt Training , 2011 .

[44]  Ángel Jesús Gómez Peláez,et al.  Assessment of atmospheric processes driving ozone variations in the subtropical North Atlantic free troposphere , 2012 .

[45]  Dimming and brightening trends in direct solar irradiance from 1909 to 2010 over Davos, Switzerland: Proportions of aerosol and gaseous transmission , 2013 .

[46]  David Pozo-Vázquez,et al.  An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images , 2013 .

[47]  Sara Basart,et al.  The MACC-II 2007-2008 reanalysis: atmospheric dust evaluation and characterization over northern Africa and the Middle East , 2014 .

[48]  Victoria E. Cachorro,et al.  Solar radiation measurements compared to simulations at the BSRN Izaña station. Mineral dust radiative forcing and efficiency study , 2014 .

[49]  L. Alados-Arboledas,et al.  Estimating aerosol characteristics from solar irradiance measurements at an urban location in southeastern Spain , 2014 .

[50]  E. Cuevas,et al.  Recovering long-term aerosol optical depth series (1976–2012) from an astronomical potassium-based resonance scattering spectrometer , 2014 .

[51]  V. Cachorro,et al.  Reconstruction of global solar radiation time series from 1933 to 2013 at the Izaña Atmospheric Observatory , 2014 .

[52]  Sara Basart,et al.  Izaña Atmospheric Research Center. Activity Report 2017-2018 , 2015 .

[53]  Xavier Querol,et al.  Modulation of Saharan dust export by the North African dipole , 2015 .

[54]  Mark Beale,et al.  Neural Network Toolbox™ User's Guide , 2015 .