Modeling the structure and electronic properties of Ti O 2 nanoparticles

A self-consistent tight-binding method and density functional theory were used to study structures and electronic properties of anatase nanoparticles. Full geometry optimization resulted in both surface relaxation and a slight overall contraction of the nanoparticles. Analyzing electronic properties using electron localization function and Mulliken populations, we found nonbonding electrons at the edges and corners of the nanoparticle. The results of tight-binding and density functional theory calculations are in good agreement, suggesting the tight-binding scheme to be a useful tool for studies of larger nanoparticles in the range of hundreds to thousands of atoms. The self-consistent tight-binding results on nanoparticles of sizes up to 1365 atoms and some structural, electronic, and energetic trends as a function of nanoparticle size are also reported.

[1]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[2]  Wei Zhang,et al.  Photoluminescence in anatase titanium dioxide nanocrystals , 2000 .

[3]  Timothy Hughbanks,et al.  Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K , 1987 .

[4]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[5]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[6]  A. Barnard,et al.  Predicting the Energetics, Phase Stability, and Morphology Evolution of Faceted and Spherical Anatase Nanocrystals , 2004 .

[7]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[8]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[9]  J. W. Halley,et al.  Self-consistent tight-binding atomic-relaxation model of titanium dioxide , 1998 .

[10]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[11]  S. Russo,et al.  Hydrogenation of nanodiamond surfaces: structure and effects on crystalline stability , 2003 .

[12]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[13]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[14]  G. Wulff,et al.  XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen , 1901 .

[15]  S. Lunell,et al.  The Smallest Possible Nanocrystals of Semiionic Oxides , 2003 .

[16]  Jörg Maser,et al.  Biology of TiO2–oligonucleotide nanocomposites , 2003, Nature materials.

[17]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[18]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[19]  A. Zunger,et al.  A new method for diagonalising large matrices , 1985 .

[20]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[21]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[22]  J. Banfield,et al.  Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. , 2005, The journal of physical chemistry. B.

[23]  Yu.,et al.  Electronic structure of point defects in rutile TiO2. , 1995, Physical review. B, Condensed matter.

[24]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[25]  A. Barnard,et al.  Effects of Particle Morphology and Surface Hydrogenation on the Phase Stability of TiO2 at the Nanoscale , 2004 .

[26]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[27]  J. W. Halley,et al.  Self-consistent tight-binding study of low-index titanium surfaces , 2005 .

[28]  A. Barnard,et al.  A model for the phase stability of arbitrary nanoparticles as a function of size and shape. , 2004, The Journal of chemical physics.

[29]  Annabella Selloni,et al.  Erratum: Structure and energetics of stoichiometric TiO 2 anatase surfaces [Phys. Rev. B 63, 155409 (2001)] , 2002 .

[30]  Annabella Selloni,et al.  Structure and energetics of stoichiometric TiO 2 anatase surfaces , 2001 .