Regular Partitions of Hypergraphs: Regularity Lemmas
暂无分享,去创建一个
[1] H. Furstenberg,et al. An ergodic Szemerédi theorem for IP-systems and combinatorial theory , 1985 .
[2] Noga Alon,et al. Efficient Testing of Large Graphs , 2000, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[3] Vojtech Rödl,et al. The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..
[4] Vojtech Rödl,et al. Every Monotone 3-Graph Property is Testable , 2007, SIAM J. Discret. Math..
[5] Yoshiharu Kohayakawa,et al. Hypergraphs, Quasi-randomness, and Conditions for Regularity , 2002, J. Comb. Theory, Ser. A.
[6] Vojtech Rödl,et al. On the Ramsey Number of Sparse 3-Graphs , 2008, Graphs Comb..
[7] B. Green. A Szemerédi-type regularity lemma in abelian groups, with applications , 2003, math/0310476.
[8] Vojtech Rödl,et al. A sharp threshold for random graphs with a monochromatic triangle in every edge coloring , 2006, Memoirs of the American Mathematical Society.
[9] Daniela Kühn,et al. Embeddings and Ramsey numbers of sparse κ-uniform hypergraphs , 2006, Comb..
[10] Vojtech Rödl,et al. Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.
[11] Vojtech Rödl,et al. Integer and fractional packings of hypergraphs , 2007, J. Comb. Theory, Ser. B.
[12] Vojtech Rödl,et al. Regular Partitions of Hypergraphs: Counting Lemmas , 2007, Combinatorics, Probability and Computing.
[13] N. Alon,et al. testing of large graphs , 2000 .
[14] W. T. Gowers,et al. Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .
[15] József Solymosi,et al. A Note on a Question of Erdős and Graham , 2004, Combinatorics, Probability and Computing.
[16] Vojtech Rödl,et al. Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.
[17] H. Furstenberg,et al. An ergodic Szemerédi theorem for commuting transformations , 1978 .
[18] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[19] Vojtech Rödl,et al. The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.
[20] T. Tao,et al. The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.
[21] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[22] János Komlós,et al. The Regularity Lemma and Its Applications in Graph Theory , 2000, Theoretical Aspects of Computer Science.
[23] W. T. Gowers,et al. Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.
[24] RodlVojtech,et al. Regular Partitions of Hypergraphs , 2007 .
[25] Mathias Schacht,et al. Density theorems and extremal hypergraph problems , 2006 .
[26] W. T. Gowers,et al. Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.
[27] Vojtech Rödl,et al. Extremal problems on set systems , 2002, Random Struct. Algorithms.
[28] Jozef Skokan,et al. Applications of the regularity lemma for uniform hypergraphs , 2006 .
[29] Vojtech Rödl,et al. Every Monotone 3-Graph Property is Testable , 2005, SIAM J. Discret. Math..
[30] V. Rödl,et al. Extremal Hypergraph Problems and the Regularity Method , 2006 .
[31] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .
[32] Terence Tao. A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.
[33] Y. Kohayakawa. Szemerédi's regularity lemma for sparse graphs , 1997 .
[34] H. Furstenberg,et al. A density version of the Hales-Jewett theorem , 1991 .