Universally optimal distribution of points on spheres

We study configurations of points on the unit sphere that minimize potential energy for a broad class of potential functions (viewed as functions of the squared Euclidean distance between points). Call a configuration sharp if there are m distances between distinct points in it and it is a spherical (2m-1)-design. We prove that every sharp configuration minimizes potential energy for all completely monotonic potential functions. Examples include the minimal vectors of the E_8 and Leech lattices. We also prove the same result for the vertices of the 600-cell, which do not form a sharp configuration. For most known cases, we prove that they are the unique global minima for energy, as long as the potential function is strictly completely monotonic. For certain potential functions, some of these configurations were previously analyzed by Yudin, Kolushov, and Andreev; we build on their techniques. We also generalize our results to other compact two-point homogeneous spaces, and we conclude with an extension to Euclidean space.

[1]  W. Bowen,et al.  Philadelphia , 1892 .

[2]  E. C. Titchmarsh,et al.  The Laplace Transform , 1991, Heat Transfer 1.

[3]  J. C. Tressler,et al.  Fourth Edition , 2006 .

[4]  B. L. Waerden,et al.  Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz? , 1951 .

[5]  Hsien-Chtjng Wang,et al.  TWO-POINT HOMOGENEOUS SPACES , 1952 .

[6]  John Leech,et al.  Equilibrium of Sets of Particles on a Sphere , 1957, The Mathematical Gazette.

[7]  J. Tits Ovoßdes et Groupes de Suzuki , 1962 .

[8]  M. Newman,et al.  Interpolation and approximation , 1965 .

[9]  R. Gangolli,et al.  Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's brownian motion of several parameters , 1967 .

[10]  G. Gasper Linearization of the Product of Jacobi Polynomials. I , 1970, Canadian Journal of Mathematics.

[11]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[12]  T. Willmore Algebraic Geometry , 1973, Nature.

[13]  J. J. Seidel,et al.  The regular two-graph on 276 vertices , 1975, Discret. Math..

[14]  R. Askey Orthogonal Polynomials and Special Functions , 1975 .

[15]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.

[16]  Peter J. Cameron,et al.  Strongly Regular Graphs Having Strongly Regular Subconstituents , 1978 .

[17]  K. Böröczky Packing of spheres in spaces of constant curvature , 1978 .

[18]  N. J. A. Sloane,et al.  New Bounds on the Number of Unit Spheres That Can Touch a Unit Sphere in n Dimensions , 1979, J. Comb. Theory, Ser. A.

[19]  E. Shult,et al.  Near n-gons and line systems , 1980 .

[20]  J. Vaaler,et al.  A class of extremal functions for the Fourier transform , 1981 .

[21]  Uniqueness of Certain Spherical Codes , 1981 .

[22]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[23]  P. Seymour,et al.  Averaging sets: A generalization of mean values and spherical designs , 1984 .

[24]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[25]  J. Vaaler,et al.  Some Extremal Functions in Fourier Analysis, III , 1985, 0809.4053.

[26]  Hugh L. Montgomery,et al.  Minimal theta functions , 1988, Glasgow Mathematical Journal.

[27]  Robert A. Wilson Vector stabilizers and subgroups of Leech lattice groups , 1989 .

[28]  J. Seidel,et al.  SPHERICAL CODES AND DESIGNS , 1991 .

[29]  V. Levenshtein Designs as maximum codes in polynomial metric spaces , 1992 .

[30]  V. Yudin,et al.  The minimum of potential energy of a System of point charges , 1993 .

[31]  W. Ebeling,et al.  Lattices and Codes: A Course Partially Based on Lectures by F. Hirzebruch , 1994 .

[32]  A. Ron,et al.  Strictly positive definite functions on spheres in Euclidean spaces , 1994, Math. Comput..

[33]  On Korkin-Zolotarev’s construction , 1994 .

[34]  R. Strichartz A Guide to Distribution Theory and Fourier Transforms , 1994 .

[35]  N. J. A. Sloane,et al.  Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..

[36]  Nikolay N. Andreev,et al.  An Extremal Property Of The Icosahedron , 1996 .

[37]  V. A. Yudin,et al.  Extremal dispositions of points on the sphere , 1997 .

[38]  V. Levenshtein Universal bounds for codes and designs, in Handbookof Coding Theory , 1998 .

[39]  V. Andreev A spherical code , 1999 .

[40]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[41]  Frits Beukers,et al.  SPECIAL FUNCTIONS (Encyclopedia of Mathematics and its Applications 71) , 2001 .

[42]  Danyo Danev,et al.  Uniqueness of the 120-point spherical 11-design in four dimensions , 2001 .

[43]  P. Rowlinson ALGEBRAIC GRAPH THEORY (Graduate Texts in Mathematics 207) By CHRIS GODSIL and GORDON ROYLE: 439 pp., £30.50, ISBN 0-387-95220-9 (Springer, New York, 2001). , 2002 .

[44]  Henry Cohn New upper bounds on sphere packings II , 2001, math/0110010.

[45]  Henry Cohn,et al.  New upper bounds on sphere packings I , 2001, math/0110009.

[46]  K. Böröczky Finite Packing and Covering , 2004 .

[47]  John Wang Montclair Second Edition , 2004 .

[48]  Henry Cohn,et al.  The densest lattice in twenty-four dimensions , 2004, math/0408174.

[49]  HANS CUYPERS A Note on the Tight Spherical 7-Design in $${\mathbb R}^{23}$$ and 5-Design in $${\mathbb R}^{7*}$$ , 2005, Des. Codes Cryptogr..

[50]  Akihiro Munemasa,et al.  The nonexistence of certain tight spherical designs , 2005 .

[51]  Henry Cohn,et al.  Uniqueness of the (22,891,1/4) spherical code , 2006, math/0607448.

[52]  Martin Henk FINITE PACKING AND COVERING (Cambridge Tracts in Mathematics 154) , 2006 .

[53]  Peter Sarnak,et al.  Minima of Epstein’s Zeta function and heights of flat tori , 2006 .

[54]  Abhinav Kumar,et al.  The D 4 Root System Is Not Universally Optimal , 2007, Exp. Math..

[55]  J. Vaaler SOME EXTREMAL FUNCTIONS IN FOURIER ANALYSIS , 2007 .