STRONG COLORINGS OVER PARTITIONS

Abstract A strong coloring on a cardinal $\kappa $ is a function $f:[\kappa ]^2\to \kappa $ such that for every $A\subseteq \kappa $ of full size $\kappa $ , every color $\unicode{x3b3} <\kappa $ is attained by $f\restriction [A]^2$ . The symbol $$ \begin{align*} \kappa\nrightarrow[\kappa]^2_{\kappa} \end{align*} $$ asserts the existence of a strong coloring on $\kappa $ . We introduce the symbol $$ \begin{align*} \kappa\nrightarrow_p[\kappa]^2_{\kappa} \end{align*} $$ which asserts the existence of a coloring $f:[\kappa ]^2\to \kappa $ which is strong over a partition $p:[\kappa ]^2\to \theta $ . A coloring f is strong over p if for every $A\in [\kappa ]^{\kappa }$ there is $i<\theta $ so that for every color $\unicode{x3b3} <\kappa $ is attained by $f\restriction ([A]^2\cap p^{-1}(i))$ . We prove that whenever $\kappa \nrightarrow [\kappa ]^2_{\kappa }$ holds, also $\kappa \nrightarrow _p[\kappa ]^2_{\kappa }$ holds for an arbitrary finite partition p. Similarly, arbitrary finite p-s can be added to stronger symbols which hold in any model of ZFC. If $\kappa ^{\theta }=\kappa $ , then $\kappa \nrightarrow _p[\kappa ]^2_{\kappa }$ and stronger symbols, like $\operatorname {Pr}_1(\kappa ,\kappa ,\kappa ,\chi )_p$ or $\operatorname {Pr}_0(\kappa ,\kappa ,\kappa ,\aleph _0)_p$ , also hold for an arbitrary partition p to $\theta $ parts. The symbols $$ \begin{gather*} \aleph_1\nrightarrow_p[\aleph_1]^2_{\aleph_1},\;\;\; \aleph_1\nrightarrow_p[\aleph_1\circledast \aleph_1]^2_{\aleph_1},\;\;\; \aleph_0\circledast\aleph_1\nrightarrow_p[1\circledast\aleph_1]^2_{\aleph_1}, \\ \operatorname{Pr}_1(\aleph_1,\aleph_1,\aleph_1,\aleph_0)_p,\;\;\;\text{ and } \;\;\; \operatorname{Pr}_0(\aleph_1,\aleph_1,\aleph_1,\aleph_0)_p \end{gather*} $$ hold for an arbitrary countable partition p under the Continuum Hypothesis and are independent over ZFC $+ \neg $ CH.

[1]  P. Erdős ON SET-SYSTEMS HAVING LARGE CHROMATIC NUMBER AND NOT CONTAINING PRESCRIBED SUBSYSTEMS , 1973 .

[2]  S. Shelah,et al.  Universal graphs and functions on ω1 , 2021, Annals of Pure and Applied Logic.

[3]  Stevo Todorcevic,et al.  Partition Problems In Topology , 1989 .

[4]  W. G. Fleissner Some Spaces Related to Topological Inequalities Proven by the Erdös-Rado Theorem , 1978 .

[5]  S. Thomas CARDINAL ARITHMETIC (Oxford Logic Guides 29) , 1997 .

[6]  Stevo Todorcevic,et al.  Partitioning pairs of countable ordinals , 1987 .

[7]  Stevo Todorcevic,et al.  Oscillations of Sets of Integers , 1998 .

[8]  Saharon Shelah,et al.  Was sierpinski right? I , 1988 .

[9]  Fred Galvin,et al.  Chain conditions and products , 1980 .

[10]  Todd Eisworth,et al.  Successors of Singular Cardinals , 2010 .

[11]  Judy Roitman Correction to: Adding a random or a Cohen real: topological consequences and the effect on Martin's axiom , 1979 .

[12]  Saharon Shelah Was Sierpinski Right? III: Can Continuum-cc. Times c.c.c. be Continuum-c.c.? , 1996, Ann. Pure Appl. Log..

[14]  Uri Abraham,et al.  Partition properties of ω1 compatible with CH , 1997 .

[15]  Todd Eisworth,et al.  Club-guessing, stationary reflection, and coloring theorems , 2009, Ann. Pure Appl. Log..

[16]  Assaf Rinot,et al.  Strongest transformations , 2021 .

[17]  Saharon Shelah Colouring and Non-Productivity of aleph2-C.C , 1997, Ann. Pure Appl. Log..

[18]  Todd Eisworth Getting more colors II , 2013, J. Symb. Log..

[19]  Stevo Todorcevic,et al.  Some Partitions of Three-Dimensional Combinatorial Cubes , 1994, J. Comb. Theory, Ser. A.

[20]  Juris Steprans,et al.  Advances on strong colorings over partitions , 2021 .

[21]  Saharon Shelah,et al.  Successors of singular cardinals and coloring theorems {II} , 2009, J. Symb. Log..

[22]  P. Erdös,et al.  Combinatorial Set Theory: Partition Relations for Cardinals , 2012 .

[23]  Chris Lambie-Hanson,et al.  Knaster and friends II: The C-sequence number , 2021, J. Math. Log..

[24]  Saharon Shelah,et al.  Successors of singular cardinals and coloring theorems I , 2005, Arch. Math. Log..

[25]  Péter Komjáth,et al.  Some Remarks on the Simultaneous Chromatic Number , 2003, Comb..

[26]  S. Todorcevic,et al.  Proof of a conjecture of Galvin , 2018, Forum of Mathematics, Pi.

[27]  Saharon Shelai-F,et al.  SUCCESSORS OF SINGULARS, COFINALITIES OF REDUCED PRODUCTS OF CARDINALS AND PRODUCTIVITY OF CHAIN CONDITIONS , 1988 .

[28]  Yinhe Peng,et al.  A Lindelöf group with non-Lindelöf square , 2018 .

[29]  Assaf Rinot,et al.  Chain conditions of Products, and Weakly Compact Cardinals , 2014, Bull. Symb. Log..

[30]  James E. Baumgartner Partition relations for countable topological spaces , 1986, J. Comb. Theory, Ser. A.

[31]  Jonathan Klawitter,et al.  Transforming rectangles into squares , 2014 .

[32]  A. Rinot Transforming rectangles into squares, with applications to strong colorings , 2011, 1103.2838.

[33]  Haim Judah,et al.  Set Theory: On the Structure of the Real Line , 1995 .

[34]  Justin Tatch Moore A solution to the L space problem , 2005 .

[35]  Saharon Shelah,et al.  Proper and Improper Forcing , 1998 .

[36]  Todd Eisworth Getting more colors I , 2013, J. Symb. Log..