A preconditioned fast Hermite finite element method for space-fractional diffusion equations

We develop a fast Hermite finite element method for a one-dimensional space-fractional diffusion equation, by proving that the stiffness matrix of the method can be expressed as a Toeplitz block matrix. Then a block circulant preconditioner is presented. Numerical results are presented to show the utility of the fast method.

[1]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[2]  R. Chan Circulant preconditioners for Hermitian Toeplitz systems , 2011 .

[3]  Alan D. Freed,et al.  An efficient algorithm for the evaluation of convolution integrals , 2006, Comput. Math. Appl..

[4]  Changpin Li,et al.  Fractional differential models for anomalous diffusion , 2010 .

[5]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[6]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[7]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[8]  Hai-Wei Sun,et al.  Multigrid method for fractional diffusion equations , 2012, J. Comput. Phys..

[9]  X. Li,et al.  Existence and Uniqueness of the Weak Solution of the Space-Time Fractional Diffusion Equation and a Spectral Method Approximation , 2010 .

[10]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[11]  Hong Wang,et al.  A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations , 2013, J. Comput. Phys..

[12]  Xiao-Qing Jin,et al.  Preconditioned iterative methods for fractional diffusion equation , 2014, J. Comput. Phys..

[13]  Jiye Yang,et al.  Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations , 2014, J. Comput. Phys..

[14]  Hong Wang,et al.  A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh , 2015, J. Comput. Phys..

[15]  V. Ervin,et al.  Variational solution of fractional advection dispersion equations on bounded domains in ℝd , 2007 .

[16]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[17]  Hong Wang,et al.  A Fast Finite Difference Method for Two-Dimensional Space-Fractional Diffusion Equations , 2012, SIAM J. Sci. Comput..

[18]  R. Chan,et al.  A Family of Block Preconditioners for Block Systems , 1992, SIAM J. Sci. Comput..

[19]  Yangquan Chen,et al.  Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion , 2011, Comput. Math. Appl..

[20]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[21]  Hong Wang,et al.  A high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations , 2015, J. Comput. Phys..

[22]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[23]  I. Podlubny Fractional differential equations , 1998 .

[24]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[25]  Hong Wang,et al.  A Fast Finite Element Method for Space-Fractional Dispersion Equations on Bounded Domains in ℝ2 , 2015, SIAM J. Sci. Comput..

[26]  Hong Wang,et al.  Accuracy of Finite Element Methods for Boundary-Value Problems of Steady-State Fractional Diffusion Equations , 2017, J. Sci. Comput..

[27]  Petr N. Vabishchevich,et al.  Numerical Solution of Nonstationary Problems for a Space-Fractional Diffusion Equation , 2014, ArXiv.

[28]  Siu-Long Lei,et al.  A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..

[29]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[30]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[31]  Yingjun Jiang,et al.  Multigrid methods for space fractional partial differential equations , 2015, J. Comput. Phys..

[32]  D. Benson,et al.  The fractional‐order governing equation of Lévy Motion , 2000 .

[33]  Hong Wang,et al.  Wellposedness of Variable-Coefficient Conservative Fractional Elliptic Differential Equations , 2013, SIAM J. Numer. Anal..