Total column water vapour measurements from GOME-2 MetOp-A and MetOp-B

Abstract. Knowledge of the total column water vapour (TCWV) global distribution is fundamental for climate analysis and weather monitoring. In this work, we present the retrieval algorithm used to derive the operational TCWV from the GOME-2 sensors aboard EUMETSAT's MetOp-A and MetOp-B satellites and perform an extensive inter-comparison in order to evaluate their consistency and temporal stability. For the analysis, the GOME-2 data sets are generated by DLR in the framework of the EUMETSAT O3M-SAF project using the GOME Data Processor (GDP) version 4.7. The retrieval algorithm is based on a classical Differential Optical Absorption Spectroscopy (DOAS) method and combines a H2O and O2 retrieval for the computation of the trace gas vertical column density. We introduce a further enhancement in the quality of the H2O total column by optimizing the cloud screening and developing an empirical correction in order to eliminate the instrument scan angle dependencies. The overall consistency between measurements from the newer GOME-2 instrument on board of the MetOp-B platform and the GOME-2/MetOp-A data is evaluated in the overlap period (December 2012–June 2014). Furthermore, we compare GOME-2 results with independent TCWV data from the ECMWF ERA-Interim reanalysis, with SSMIS satellite measurements during the full period January 2007–June 2014 and against the combined SSM/I + MERIS satellite data set developed in the framework of the ESA DUE GlobVapour project (January 2007–December 2008). Global mean biases as small as ±0.035 g cm−2 are found between GOME-2A and all other data sets. The combined SSM/I-MERIS sample and the ECMWF ERA-Interim data set are typically drier than the GOME-2 retrievals, while on average GOME-2 data overestimate the SSMIS measurements by only 0.006 g cm−2. However, the size of these biases is seasonally dependent. Monthly average differences can be as large as 0.1 g cm−2, based on the analysis against SSMIS measurements, which include only data over ocean. The seasonal behaviour is not as evident when comparing GOME-2 TCWV to the ECMWF ERA-Interim and the SSM/I+MERIS data sets, since the different biases over land and ocean surfaces partly compensate each other. Studying two exemplary months, we estimate regional differences and identify a very good agreement between GOME-2 total columns and all three data sets, especially for land areas, although some discrepancies (bias larger than ±0.5 g cm−2) over ocean and over land areas with high humidity or a relatively large surface albedo are observed.

[1]  J. Tamminen,et al.  Comparison of GOME-2 / Metop total column water vapour with ground-based and in situ measurements , 2014 .

[2]  N. Fournier,et al.  Determination of Cloud Parameters from SCIAMACHY Data for the Correction of Tropospheric Trace Gases , 2005 .

[3]  Andrew E. Dessler,et al.  Water Vapor Feedback in the Tropical Upper Troposphere: Model Results and Observations , 2004 .

[4]  T. Wagner,et al.  The 1997 El Niño impact on clouds, water vapour, aerosols and reactive trace gases in the troposphere, as measured by the Global Ozone Monitoring Experiment , 2006 .

[5]  K. Pfeilsticker,et al.  DOAS moonlight observation of atmospheric NO3 in the Arctic winter , 2000 .

[6]  P. Bhartia,et al.  Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation , 1998 .

[7]  Christopher D. Barnet,et al.  Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds , 2003, IEEE Trans. Geosci. Remote. Sens..

[8]  T. Barnett,et al.  Space and Time Scales of Global Tropospheric Moisture , 1991 .

[9]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[10]  J. P. Smith,et al.  Atmospheric NO3: 1. Measurement technique and the annual cycle at 40°N , 1989 .

[11]  Christopher D. Barnet,et al.  Hyperspectral Earth Observation from IASI: Five Years of Accomplishments , 2012 .

[12]  J. Schulz,et al.  Comparison of monthly means of global total column water vapor retrieved from independent satellite observations , 2010 .

[13]  Frank J. Wentz,et al.  SSM/I Version-7 Calibration Report , 2012 .

[14]  Peter Bauer,et al.  Rainfall, total water, ice water, and water vapor over sea from polarized microwave simulations and Special Sensor Microwave/Imager data , 1993 .

[15]  Discrete-ordinate radiative transfer in a stratified medium with first-order rotational Raman scattering , 2008 .

[16]  Christian Rocken,et al.  Near real‐time GPS sensing of atmospheric water vapor , 1997 .

[17]  K. Bowman,et al.  Comparison of Tropospheric Emission Spectrometer nadir water vapor retrievals with in situ measurements , 2008 .

[18]  Ilse Aben,et al.  Precipitable water column retrieval from GOME data , 2000 .

[19]  Walter Zimmer,et al.  The GOME-2 total column ozone product: Retrieval algorithm and ground-based validation , 2011 .

[20]  Rene Preusker,et al.  1D-Var retrieval of daytime total columnar water vapour from MERIS measurements , 2011 .

[21]  S. Beirle,et al.  Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS) in the red spectral range , 2006 .

[22]  Kevin E. Trenberth,et al.  Covariability of Components of Poleward Atmospheric Energy Transports on Seasonal and Interannual Timescales , 2003 .

[23]  B. Mayer,et al.  Global patterns in daytime cloud properties derived from GOME backscatter UV-VIS measurements , 2010 .

[24]  Michael Buchwitz,et al.  The Global Ozone Monitoring Experiment (Gome) : Mission, instrument concept, and first scientific results , 1997 .

[25]  Michael E. Schaepman,et al.  Algorithm theoretical basis document , 2009 .

[26]  Lieven Clarisse,et al.  Monitoring of atmospheric composition using the thermal infrared IASI/METOP sounder , 2009 .

[27]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[28]  David Carlson,et al.  Corrections of Humidity Measurement Errors from the Vaisala RS80 Radiosonde—Application to TOGA COARE Data , 2002 .

[29]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[30]  J. Schulz,et al.  Comparison of H2O retrievals from GOME and GOME-2 , 2009 .

[31]  Steffen Beirle,et al.  Global trends (1996–2003) of total column precipitable water observed by Global Ozone Monitoring Experiment (GOME) on ERS‐2 and their relation to near‐surface temperature , 2006 .

[32]  N. Fournier,et al.  Improving cloud information over deserts from SCIAMACHY Oxygen A-band measurements , 2006 .

[33]  Frank J. Wentz,et al.  A Well Calibrated Ocean Algorithm for SSM/I , 1999 .

[34]  N. Theys,et al.  O3M SAF VALIDATION REPORT , 2009 .

[35]  J. E. Williams,et al.  Application of the Spectral Structure Parameterization technique: retrieval of total water vapor columns from GOME , 2002 .

[36]  Steffen Beirle,et al.  El Niño induced anomalies in global data sets of total column precipitable water and cloud cover derived from GOME on ERS‐2 , 2005 .

[37]  Axel Andersson,et al.  The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3 , 2010 .

[38]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[39]  Jan-Peter Muller,et al.  Interferometric synthetic aperture radar atmospheric correction: Medium Resolution Imaging Spectrometer and Advanced Synthetic Aperture Radar integration , 2006 .

[40]  Junhong Wang,et al.  Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity , 2002 .

[41]  Abderrahim Bentamy,et al.  Satellite Estimates of Wind Speed and Latent Heat Flux over the Global Oceans , 2003 .

[42]  Alan Scott,et al.  Remote sensing of the vertical distribution of atmospheric water vapor from the TOVS observations: Method , 1998 .

[43]  Ulrich Platt,et al.  Differential optical absorption spectroscopy (DOAS) , 1994 .

[44]  J. Fischer,et al.  1D-Var retrieval of daytime total columnar water vapour from MERIS measurements , 2012 .

[45]  Zhengdong Bai,et al.  Near-Real-Time GPS Sensing of Atmospheric Water Vapour , 2005 .

[46]  Diego G. Loyola,et al.  Cloud Properties Derived From GOME/ERS-2 Backscatter Data for Trace Gas Retrieval , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[47]  S. Casadio,et al.  Empirical retrieval of the atmospheric air mass factor (ERA) for the measurement of water vapour vertical content using GOME data , 2000 .

[48]  D. Dee,et al.  Variational bias correction of satellite radiance data in the ERA‐Interim reanalysis , 2009 .

[49]  S. Bakan,et al.  Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data - HOAPS 3.2 - Monthly Means / 6-Hourly Composites , 2012 .

[50]  S. Casadio,et al.  Evaluation of the GOME Water Vapor Climatology 1995–2002 , 2007 .

[51]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[52]  J. Tamminen,et al.  Validation of GOME-2/Metop total column water vapour with ground-based and in situ measurements , 2014 .

[53]  Stefan Noel,et al.  Validation of two independent retrievals of SCIAMACHY water vapour columns using radiosonde data , 2013 .

[54]  Michael Buchwitz,et al.  Atmospheric water vapor amounts retrieved from GOME satellite data , 1999 .

[55]  K. Chance,et al.  DEVELOPMENT OF A BROMINE OXIDE PRODUCT FROM GOME , 1999 .

[56]  W. Munk,et al.  Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter , 1954 .

[57]  Steffen Beirle,et al.  Three-dimensional simulation of the Ring effect in observations of scattered sun light using Monte Carlo radiative transfer models , 2009 .

[58]  Ulrich Platt,et al.  A fast H 2 O total column density product from GOME – Validation with in-situ aircraft measurements , 2003 .

[59]  Steven Businger,et al.  Sensing atmospheric water vapor with the global positioning system , 1993 .

[60]  H. Vömel,et al.  Validation of GOME-2/MetOp-A total water vapour column using reference radiosonde data from the GRUAN network , 2014 .

[61]  W. Paul Menzel,et al.  Global Soundings of the Atmosphere from ATOVS Measurements: The Algorithm and Validation , 2000 .

[62]  K. Trenberth,et al.  Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data , 2007 .

[63]  L. Phalippou,et al.  Variational retrieval of humidity profile, wind speed and cloud liquid‐water path with the SSM/I: Potential for numerical weather prediction , 1996 .

[64]  H. Bovensmann,et al.  Analysis of global water vapour trends from satellite measurements in the visible spectral range , 2007 .

[65]  Susan S. Kulawik,et al.  Profiles of CH 4 , HDO, H 2 O, and N 2 O with improved lower tropospheric vertical resolution from Aura TES radiances , 2011 .

[66]  Stefan Noel,et al.  Preliminary results of GOME-2 water vapour retrievals and first applications in polar regions , 2008 .

[67]  Klaus Pfeilsticker,et al.  The Monte Carlo atmospheric radiative transfer model McArtim: Introduction and validation of Jacobians and 3D features , 2011 .

[68]  Steven Businger,et al.  GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water , 1994 .

[69]  Michael Eisinger,et al.  Refinement of a Database of Spectral Surface Reflectivity in the Range 335-772 nm Derived from 5.5 Years of GOME Observations , 2003 .

[70]  Toshihiro Ogawa,et al.  IMG, interferometric measurement of greenhouse gases from space , 1994 .

[71]  Christian Rocken,et al.  COSMIC System Description , 2000 .

[72]  A. Hahne,et al.  GOME-2 – Metop ’ s Second-Generation Sensor for Operational Ozone Monitoring , 2000 .

[73]  F. Wentz A well‐calibrated ocean algorithm for special sensor microwave / imager , 1997 .