InP-InGaAs single HBT technology for photoreceiver OEIC's at 40 Gb/s and beyond

We describe an advanced InP-InGaAs-based technology for the monolithic integration of pin-photodiodes and SHBT-transistors. Both devices are processed using the same epitaxial grown layer structure. Employing this technology, we have designed and fabricated two photoreceivers achieving transimpedance gains of 170 /spl Omega//380 /spl Omega/ and optical/electrical bandwidths of 50 GHz/34 GHz. To the best of our knowledge, this is the highest bandwidth of any heterojunction bipolar transistor (HBT)-based photoreceiver optoelectronic integrated circuit (OEIC) published to date. We even predict a bandwidth of 60 GHz for the same circuit topology by a simple reduction of the photodiode diameter and an adjustment of the feedback resistor value.

[1]  Raimond Bauknecht InP double heterojunction bipolar transistors fpr driver circuits in fiber optical communication systems , 1998 .

[2]  D. Mensa,et al.  A>400 GHz f/sub max/ transferred-substrate heterojunction bipolar transistor IC technology , 1998, IEEE Electron Device Letters.

[3]  H. Leblanc,et al.  Evaluation of single ohmic metallisations for contacting both p- and n-type GaInAs , 1990 .

[4]  D. E. Sawyer,et al.  Narrow Base Germanium Photodiodes , 1958, Proceedings of the IRE.

[5]  High speed, monolithically integrated pin-HEMT photoreceiver fabricated on InP with a tunable bandwidth up to 22 GHz using a novel circuit design , 1996, Proceedings of 8th International Conference on Indium Phosphide and Related Materials.

[6]  E. Sano,et al.  InP/InGaAs double-heterojunction bipolar transistors for high-speed optical receivers , 1996 .

[7]  H. Melchior,et al.  46GHz bandwidth monolithic InP/lnGaAs pin/SHBT photoreceiver , 1999 .

[8]  Yutaka Miyamoto,et al.  40 Gbit/s optical receiver module using a flip-chip bonding technique for device interconnection , 1998 .

[9]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[10]  K. Kurishima,et al.  Over-220-GHz-f/sub T/-and-f/sub max/ InP/InGaAs double-heterojunction bipolar transistors with a new hexagonal-shaped emitter , 1995, GaAs IC Symposium IEEE Gallium Arsenide Integrated Circuit Symposium 17th Annual Technical Digest 1995.

[11]  Mark J. W. Rodwell,et al.  Heterojunction Bipolar Transistor IC Technology , 1998 .

[12]  Electronics Letters , 1965, Nature.

[13]  Hideki Fukano,et al.  52 GHz bandwidth monolithically integrated WGPD/HEMT photoreceiver with large O/E conversion factor of 105 V/W , 1999 .

[14]  Wolfgang Bronner,et al.  Modulator driver and photoreceiver for 20 Gb/s optic-fiber links , 1998 .

[15]  S. Chandrasekhar,et al.  High-speed monolithic p-i-n/HBT and HPT/HBT photoreceivers implemented with simple phototransistor structure , 1993, IEEE Photonics Technology Letters.

[16]  Christofer Toumazou,et al.  Integrated high frequency low-noise current-mode optical transimpedance preamplifiers: theory and practice , 1995 .

[17]  Michael Schlechtweg,et al.  Monolithic, high transimpedance gain (3.3 k[ohm sign]), 40 Gbit/s InP-HBT-photoreceiver with differential outputs , 1999 .

[18]  W. Schlaak,et al.  37 GHz bandwidth InP-based photoreceiver OEIC suitable for data rates up to 50 Gb/s , 1999, IEEE Photonics Technology Letters.

[19]  S. Chandrasekhar,et al.  High sensitivity 12 Gb/s monolithically integrated pin-HEMT photoreceivers , 1998, Conference Proceedings. 1998 International Conference on Indium Phosphide and Related Materials (Cat. No.98CH36129).

[20]  B. Willen,et al.  Monolithic optoelectronic receivers with up to 24 GHz bandwidth using InP pin-HBT technology , 1997 .

[22]  Kimikazu Sano,et al.  Ultra-high speed, low power monolithic photoreceiver using InP/InGaAs double-heterojunction bipolar transistors , 1997 .

[23]  K. Takahata,et al.  46.5-GHz-bandwidth monolithic receiver OEIC consisting of a waveguide p-i-n photodiode and a HEMT distributed amplifier , 1997, IEEE Photonics Technology Letters.

[24]  T. Morf,et al.  23 GHz monolithically integrated InP/InGaAs PIN/HBT-receiver with 12 THz/spl Omega/ gain-bandwidth product , 1998, Conference Proceedings. 1998 International Conference on Indium Phosphide and Related Materials (Cat. No.98CH36129).

[25]  M. Rodwell,et al.  112-GHz, 157-GHz, and 180-GHz InP HEMT traveling-wave amplifiers , 1998 .

[26]  Wolfgang Bronner,et al.  40 Gbit/s 1.55 [micro sign]m pin-HEMT photoreceiver monolithically integrated on 3 in GaAs substrate , 1998 .

[27]  R. Bauknecht,et al.  Monolithically integrated 40-Gb/s InP/InGaAs PIN/HBT optical receiver module , 1999, Conference Proceedings. Eleventh International Conference on Indium Phosphide and Related Materials (IPRM'99) (Cat. No.99CH36362).

[28]  E. Gini,et al.  50 GHz monolithically integrated InP/InGaAs PIN/HBT-receiver , 1999, Conference Proceedings. Eleventh International Conference on Indium Phosphide and Related Materials (IPRM'99) (Cat. No.99CH36362).

[29]  G. Lucovsky,et al.  Transit-time considerations in p-i-n diodes. , 1964 .

[30]  S. Chandrasekhar,et al.  20-Gb/s monolithic p-i-n/HBT photoreceiver module for 1.55-μm applications , 1995, IEEE Photonics Technology Letters.