A new approach to characterizing the relative position of two ellipses depending on one parameter

[1]  H. Guggenheimer,et al.  Projective and related geometries , 1966 .

[2]  W. Fulton,et al.  Algebraic Curves: An Introduction to Algebraic Geometry , 1969 .

[3]  R. Loos Generalized Polynomial Remainder Sequences , 1983 .

[4]  Laureano González-Vega,et al.  Spécialisation de la suite de Sturm et sous-résulants , 1990, RAIRO Theor. Informatics Appl..

[5]  K. Ueno An Introduction to Algebraic Geometry , 1997 .

[6]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[7]  Marie-Françoise Roy,et al.  Sturm—Habicht Sequences, Determinants and Real Roots of Univariate Polynomials , 1998 .

[8]  Wenping Wang,et al.  An algebraic condition for the separation of two ellipsoids , 2001, Comput. Aided Geom. Des..

[9]  Fujio Yamaguchi,et al.  Computer-Aided Geometric Design , 2002, Springer Japan.

[10]  Wenping Wang,et al.  Interference analysis of conics and quadrics , 2003 .

[11]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[12]  E. Briand The configurations of two real projective conics , 2005 .

[13]  Emmanuel Briand Equations, inequations and inequalities characterizing the configurations of two real projective conics , 2006, Applicable Algebra in Engineering, Communication and Computing.

[14]  S. Basu,et al.  Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics) , 2006 .

[15]  Falai Chen,et al.  Algebraic conditions for classifying the positional relationships between two conics and their applications , 2008, Journal of Computer Science and Technology.