The superior colliculus of the ferret: Cortical afferents and efferent connections to dorsal thalamus

By injecting both biotinylated and fluorescent dextran amines into the superior colliculus of the ferret we traced its afferent connections from the cerebral cortex and its projections to nuclei of the dorsal thalamus. All visual and auditory cortical areas had retrogradely labelled layer 5 pyramidal neurons projecting to the superior colliculus, with the highest density in areas 18 and 21. Secondary somatosensory and motor cortical regions also projected to the superior colliculus. No retrograde labelling was observed in primary somatosensory, primary motor or prefrontal cortex. All visual dorsal thalamic nuclei received connections from the superior colliculus. Within the LGN, lamina C and the medial interlaminar nucleus (MIN) received dense afferents terminating with large labelled boutons. Within the lateral posterior nucleus (LP) a distinct band of moderately dense small, labelled boutons was observed, and within the pulvinar a broader and less dense region of small bouton labelling was observed. For the most part these connections are similar to those seen in the cat and other mammals, however, specific comparisons appear to delineate potential evolutionary trends related to complexity of the visual system.

[1]  Andrew J King,et al.  Topographic organization of projection from the parabigeminal nucleus to the superior colliculus in the ferret revealed with fluorescent latex microspheres , 1996, Brain Research.

[2]  T. Lehmann,et al.  The new framework for understanding placental mammal evolution , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[3]  M. Law,et al.  Organization of primary visual cortex (area 17) in the ferret , 1988, The Journal of comparative neurology.

[4]  M. Wong-Riley,et al.  Quantitative light and electron microscopic analysis of cytochrome oxidase‐rich zones in V II prestriate cortex of the squirrel monkey , 1984, The Journal of comparative neurology.

[5]  Giorgio M Innocenti,et al.  Immature cortex lesions alter retinotopic maps and interhemispheric connections , 2003, Annals of neurology.

[6]  M. Meredith,et al.  Spatial distribution of functional superficial–deep connections in the adult ferret superior colliculus , 2004, Neuroscience.

[7]  M. Alex Meredith,et al.  The frontal eye fields target multisensory neurons in cat superior colliculus , 1999, Experimental Brain Research.

[8]  Jennifer M. Groh,et al.  The superior colliculus: A window for viewing issues in integrative neuroscience , 1995 .

[9]  J. Graham An autoradiographic study of the efferent connections of the superior colliculus in the cat , 1977, The Journal of comparative neurology.

[10]  M. Bickford,et al.  Ultrastructure and synaptic targets of tectothalamic terminals in the cat lateral posterior nucleus , 2003, The Journal of comparative neurology.

[11]  W. C. Hall,et al.  The pulvinar nucleus of Galago senegalensis , 1975, The Journal of comparative neurology.

[12]  Giorgio M Innocenti,et al.  Areal organization of the posterior parietal cortex of the ferret (Mustela putorius). , 2002, Cerebral cortex.

[13]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[14]  Israel Nelken,et al.  Large-scale organization of ferret auditory cortex revealed using continuous acquisition of intrinsic optical signals. , 2004, Journal of neurophysiology.

[15]  G. Innocenti,et al.  A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas , 2007, PloS one.

[16]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Kelly,et al.  Contribution of auditory cortex to sound localization by the ferret (Mustela putorius). , 1987, Journal of neurophysiology.

[18]  M. Bickford,et al.  Y retinal terminals contact interneurons in the cat dorsal lateral geniculate nucleus , 2001, The Journal of comparative neurology.

[19]  W. Hodos,et al.  Comparative Vertebrate Neuroanatomy: Evolution and Adaptation , 2005 .

[20]  M. Bickford,et al.  Inhibitory circuitry involving Y cells and Y retinal terminals in the C laminae of the cat dorsal lateral geniculate nucleus , 2003, The Journal of comparative neurology.

[21]  W. C. Hall,et al.  The organization of the pulvinar in the grey squirrel (Sciurus carolinensis). I. Cytoarchitecture and connections , 1977, The Journal of comparative neurology.

[22]  Barry E. Stein,et al.  Book Review: Cortex Governs Multisensory Integration in the Midbrain , 2002 .

[23]  David A McCormick,et al.  Circuit-based localization of ferret prefrontal cortex. , 2010, Cerebral cortex.

[24]  V. A. Makarov,et al.  Stimulus-dependent interaction between the visual areas 17 and 18 of the 2 hemispheres of the ferret (Mustela putorius). , 2008, Cerebral cortex.

[25]  S. Sherman,et al.  Fewer driver synapses in higher order than in first order thalamic relays , 2007, Neuroscience.

[26]  H. Künzle Diencephalic connections of the superior colliculus in the hedgehog tenrec , 1996, Experimental Brain Research.

[27]  Giorgio M Innocenti,et al.  Retinofugal projections following early lesions of the visual cortex in the ferret , 2002, The European journal of neuroscience.

[28]  E. G. Jones,et al.  Two epochs in the development of γ‐aminobutyric acidergic neurons in the ferret thalamus , 2003 .

[29]  Terrence R Stanford,et al.  Cortex governs multisensory integration in the midbrain. , 2002, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[30]  Giorgio M Innocenti,et al.  Visual areas in the lateral temporal cortex of the ferret (Mustela putorius). , 2004, Cerebral cortex.

[31]  D. Fitzpatrick,et al.  New view of the organization of the pulvinar nucleus in Tupaia as revealed by tectopulvinar and pulvinar‐cortical projections , 1988, The Journal of comparative neurology.

[32]  V. Perry A tectocortical visual pathway in the rat , 1980, Neuroscience.

[33]  K. Hoffmann,et al.  A motion-sensitive area in ferret extrastriate visual cortex: an analysis in pigmented and albino animals. , 2006, Cerebral cortex.

[34]  J. B. Levitt,et al.  Retinotopic organization of ferret suprasylvian cortex , 2006, Visual Neuroscience.

[35]  G. Jeffery,et al.  Subcortical afferent and efferent connections of the superior colliculus in the rat and comparisons between albino and pigmented strains , 2004, Experimental Brain Research.

[36]  D. Moore,et al.  Sources of subcortical projections to the superior colliculus in the ferret , 1997, Brain Research.

[37]  M. Ma,et al.  Responses to innocuous, but not noxious, somatosensory stimulation by neurons in the ferret superior colliculus. , 2000 .

[38]  R. Moore,et al.  The tecto‐thalamic connections in the brain of the rabbit , , 1966, The Journal of comparative neurology.

[39]  A. King,et al.  Multisensory integration: perceptual grouping by eye and ear , 2001, Current Biology.

[40]  A J King,et al.  Spatial response properties of acoustically responsive neurons in the superior colliculus of the ferret: a map of auditory space. , 1987, Journal of neurophysiology.

[41]  J. Sprague,et al.  Corticofugal projections from the visual cortices to the thalamus, pretectum and superior colliculus in the cat , 1974, The Journal of comparative neurology.

[42]  A. S. Ramoa,et al.  Organization of the neurons of origin of the descending pathways from the ferret superior colliculus , 2001, Neuroscience Research.

[43]  Andreas K Engel,et al.  Location, architecture, and retinotopy of the anteromedial lateral suprasylvian visual area (AMLS) of the ferret (Mustela putorius) , 2008, Visual Neuroscience.

[44]  Andrew J. King,et al.  Signals from the Superficial Layers of the Superior Colliculus Enable the Development of the Auditory Space Map in the Deeper Layers , 1998, The Journal of Neuroscience.

[45]  H. Holländer On the origin of the corticotectal projections in the cat , 2004, Experimental Brain Research.

[46]  W. Fries Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase , 1984, The Journal of comparative neurology.

[47]  J. Kaas,et al.  Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys , 2000, Visual Neuroscience.

[48]  G. Innocenti,et al.  Specificity of Neuronal Responses in Primary Visual Cortex Is Modulated by Interhemispheric CorticoCortical Input , 2010, Cerebral cortex.

[49]  W. C. Hall,et al.  Projections from the superior colliculus to the dorsal lateral geniculate nucleus of the grey squirrel (Sciurus carolinensis) , 1976, Brain Research.

[50]  M. Meredith,et al.  Chemoarchitecture of GABAergic neurons in the ferret superior colliculus , 2002, The Journal of comparative neurology.

[51]  P. Manger,et al.  Immunohistochemical parcellation of the ferret (Mustela putorius) visual cortex reveals substantial homology with the cat (Felis catus) , 2010, The Journal of comparative neurology.

[52]  K. Hoffmann,et al.  Retinal Projections to the Pretectum, Accessory Optic System and Superior Colliculus in Pigmented and Albino Ferrets , 1993, The European journal of neuroscience.

[53]  Italo Masiello,et al.  Architecture and callosal connections of visual areas 17, 18, 19 and 21 in the ferret (Mustela putorius). , 2002, Cerebral cortex.

[54]  Per E. Roland,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[55]  Responses to innocuous, but not noxious, somatosensory stimulation by neurons in the ferret superior colliculus. , 2000, Somatosensory & motor research.

[56]  L. Benevento,et al.  The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (macaca mulatta): An autoradiographic study , 1976, Brain Research.

[57]  J. H. Casseday,et al.  Projections from cortex to tectum in the tree shrew, Tupaia glis , 1979, The Journal of comparative neurology.

[58]  B. Stein,et al.  The Merging of the Senses , 1993 .

[59]  J. Olavarria,et al.  The projection from striate and extrastriate cortical areas to the superior colliculus in the rat , 1982, Brain Research.

[60]  David C Lyon,et al.  Distribution across cortical areas of neurons projecting to the superior colliculus in new world monkeys. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[61]  D. Raczkowski,et al.  Projections from the superior colliculus and the neocortex to the pulvinar nucleus in Galago , 1981, The Journal of comparative neurology.

[62]  M. Bickford,et al.  Ultrastructural examination of diffuse and specific tectopulvinar projections in the tree shrew , 2008, The Journal of comparative neurology.

[63]  S. Carlile,et al.  Changes induced in the representation of auditory space in the superior colliculus by rearing ferrets with binocular eyelid suture , 2004, Experimental Brain Research.

[64]  R. Mooney,et al.  Anatomical and functional organization of pathway from superior colliculus to lateral posterior nucleus in hamster. , 1984, Journal of neurophysiology.

[65]  M. Bickford,et al.  Synaptic organization of the tectorecipient zone of the rat lateral posterior nucleus , 2009, The Journal of comparative neurology.

[66]  Sonata Valentiniene,et al.  Relating Information, Encoding and Adaptation: Decoding the Population Firing Rate in Visual Areas 17/18 in Response to a Stimulus Transition , 2010, PloS one.

[67]  Andreas K Engel,et al.  The anterior ectosylvian visual area of the ferret: a homologue for an enigmatic visual cortical area of the cat? , 2005, The European journal of neuroscience.

[68]  L. C. Katz,et al.  Molecular Organization of the Ferret Visual Thalamus , 2004, The Journal of Neuroscience.

[69]  G. Innocenti,et al.  Dynamic properties of the representation of the visual field midline in the visual areas 17 and 18 of the ferret (Mustela putorius). , 2008, Cerebral cortex.

[70]  Giorgio M Innocenti,et al.  The representation of the visual field in three extrastriate areas of the ferret (Mustela putorius) and the relationship of retinotopy and field boundaries to callosal connectivity. , 2002, Cerebral cortex.

[71]  G. Groos,et al.  Cortico-recipient and tecto-recipient visual zones in the rat's lateral posterior (pulvinar) nucleus: An anatomical study , 1981, Neuroscience Letters.

[72]  Ann M. Graybiel,et al.  Parallel thalamic zones in the LP-pulvinar complex of the cat identified by their afferent and efferent connections , 1978, Brain Research.

[73]  B. V. Updyke,et al.  Corticotectal projections in the cat: Anterograde transport studies of twenty‐five cortical areas , 1992, The Journal of comparative neurology.

[74]  John Q. Trojanowski,et al.  Peroxidase labeled subcortical afferents to pulvinar in rhesus monkey , 1975, Brain Research.

[75]  B. Dreher,et al.  The development of the corticotectal pathway in the albino rat. , 1986, Brain research.

[76]  M. Bickford,et al.  Relative distribution of synapses in the pulvinar nucleus of the cat: Implications regarding the “driver/modulator” theory of thalamic function , 2002, The Journal of comparative neurology.

[77]  J. Rafols,et al.  Efferent projections of the superior colliculus in the opossum , 1970, The Journal of comparative neurology.

[78]  P. Manger Establishing order at the systems level in mammalian brain evolution , 2005, Brain Research Bulletin.

[79]  D. P. Phillips,et al.  Representation of the cochlea in primary auditory cortex of the ferret (Mustela putorius) , 1986, Hearing Research.

[80]  E. Kicliter,et al.  Superior colliculus efferents to five subcortical visual system structures in the ground squirrel , 1987, Brain Research.

[81]  K. Kawamura,et al.  Various types of corticotectal neurons of cats as demonstrated by means of retrograde axonal transport of horseradish peroxidase , 1979, Experimental Brain Research.

[82]  D. B. Bender,et al.  Distribution of corticotectal cells in macaque , 2003, Experimental Brain Research.