Capillary networks in tumor angiogenesis: From discrete endothelial cells to phase‐field averaged descriptions via isogeometric analysis

Tumor angiogenesis, the growth of new capillaries from preexisting ones promoted by the starvation and hypoxia of cancerous cell, creates complex biological patterns. These patterns are captured by a hybrid model that involves high-order partial differential equations coupled with mobile, agent-based components. The continuous equations of the model rely on the phase-field method to describe the intricate interfaces between the vasculature and the host tissue. The discrete equations are posed on a cellular scale and treat tip endothelial cells as mobile agents. Here, we put the model into a coherent mathematical and algorithmic framework and introduce a numerical method based on isogeometric analysis that couples the discrete and continuous descriptions of the theory. Using our algorithms, we perform numerical simulations that show the development of the vasculature around a tumor. The new method permitted us to perform a parametric study of the model. Furthermore, we investigate different initial configurations to study the growth of the new capillaries. The simulations illustrate the accuracy and efficiency of our numerical method and provide insight into the dynamics of the governing equations as well as into the underlying physical phenomenon.

[1]  Vittorio Cristini,et al.  Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis. , 2010, Journal of theoretical biology.

[2]  Kristoffer G. van der Zee,et al.  Numerical simulation of a thermodynamically consistent four‐species tumor growth model , 2012, International journal for numerical methods in biomedical engineering.

[3]  S. McDougall,et al.  Multiscale modelling and nonlinear simulation of vascular tumour growth , 2009, Journal of mathematical biology.

[4]  Michael Bergdorf,et al.  A hybrid model for three-dimensional simulations of sprouting angiogenesis. , 2008, Biophysical journal.

[5]  Shuyu Sun,et al.  A deterministic model of growth factor-induced angiogenesis , 2005, Bulletin of mathematical biology.

[6]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[7]  Marino Arroyo,et al.  Second‐order convex maximum entropy approximants with applications to high‐order PDE , 2013 .

[8]  J. Folkman,et al.  A model of angiogenesis in the mouse cornea. , 1996, Investigative ophthalmology & visual science.

[9]  P. Carmeliet,et al.  Angiogenesis in cancer and other diseases , 2000, Nature.

[10]  Haymo Kurz,et al.  Angiogenesis and vascular remodeling by intussusception: from form to function. , 2003, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[11]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .

[12]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[13]  J. Tinsley Oden,et al.  Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth , 2012, Journal of Mathematical Biology.

[14]  James B Hoying,et al.  The role of mechanical stresses in angiogenesis. , 2005, Critical reviews in biomedical engineering.

[15]  M. Chaplain,et al.  Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. , 1997, IMA journal of mathematics applied in medicine and biology.

[16]  R. Auerbach,et al.  Tumor-induced neovascularization in the mouse eye. , 1982, Journal of the National Cancer Institute.

[17]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[18]  Heike Emmerich,et al.  The Diffuse Interface Approach in Materials Science: Thermodynamic Concepts and Applications of Phase-Field Models , 2003 .

[19]  F. Campelo,et al.  Dynamic model and stationary shapes of fluid vesicles , 2006, The European physical journal. E, Soft matter.

[20]  Xiangrong Li,et al.  Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching , 2009, Journal of mathematical biology.

[21]  B. Sleeman,et al.  Mathematical modeling of the onset of capillary formation initiating angiogenesis , 2001, Journal of mathematical biology.

[22]  M. Nonomura,et al.  Study on Multicellular Systems Using a Phase Field Model , 2011, PloS one.

[23]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[24]  K. Alitalo,et al.  VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia , 2003, The Journal of cell biology.

[25]  Michael Ortiz,et al.  Smooth, second order, non‐negative meshfree approximants selected by maximum entropy , 2009 .

[26]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[27]  J. Tinsley Oden,et al.  GENERAL DIFFUSE-INTERFACE THEORIES AND AN APPROACH TO PREDICTIVE TUMOR GROWTH MODELING , 2010 .

[28]  Roy H. Stogner,et al.  C1 macroelements in adaptive finite element methods , 2007 .

[29]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[30]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[31]  D. McDonald,et al.  Cellular abnormalities of blood vessels as targets in cancer. , 2005, Current opinion in genetics & development.

[32]  Xesús Nogueira,et al.  An unconditionally energy-stable method for the phase field crystal equation , 2012 .

[33]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[34]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[35]  P. Carmeliet,et al.  Molecular mechanisms of blood vessel growth. , 2001, Cardiovascular research.

[36]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[37]  Eugenia Corvera Poiré,et al.  Tumor Angiogenesis and Vascular Patterning: A Mathematical Model , 2011, PloS one.

[38]  Holger Gerhardt,et al.  Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis , 2007, Nature.

[39]  H. Frieboes,et al.  Computer simulation of glioma growth and morphology , 2007, NeuroImage.

[40]  Nan Xiao,et al.  Simulation of blood flow in deformable vessels using subject‐specific geometry and spatially varying wall properties , 2011, International journal for numerical methods in biomedical engineering.

[41]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Cahn-Hilliard type equations , 2007, J. Comput. Phys..

[42]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[43]  Xingde Ye,et al.  The Fourier spectral method for the Cahn-Hilliard equation , 2005, Appl. Math. Comput..

[44]  Ryo Kobayashi,et al.  A Numerical Approach to Three-Dimensional Dendritic Solidification , 1994, Exp. Math..

[45]  Dai Fukumura,et al.  Dissecting tumour pathophysiology using intravital microscopy , 2002, Nature Reviews Cancer.

[46]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[47]  J. Lang Two-dimensional fully adaptive solutions of reaction-diffusion equations , 1995 .

[48]  Benjamin J Ellis,et al.  Effect of mechanical boundary conditions on orientation of angiogenic microvessels. , 2008, Cardiovascular research.

[49]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[50]  W. Figg,et al.  Angiogenesis : an integrative approach from science to medicine , 2008 .

[51]  J. París,et al.  Numerical simulation of asymptotic states of the damped Kuramoto-Sivashinsky equation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Heike Emmerich,et al.  Advances of and by phase-field modelling in condensed-matter physics , 2008 .

[53]  G. Breier,et al.  Angiogenesis in embryonic development--a review. , 2000, Placenta.

[54]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[55]  Xiaodong Feng,et al.  Angiogenesis in wound healing. , 2000, The journal of investigative dermatology. Symposium proceedings.

[56]  Alexander R. A. Anderson,et al.  A Mathematical Model for Capillary Network Formation in the Absence of Endothelial Cell Proliferation , 1998 .

[57]  Paul A. Bates,et al.  Tipping the Balance: Robustness of Tip Cell Selection, Migration and Fusion in Angiogenesis , 2009, PLoS Comput. Biol..

[58]  J. Folkman Tumor angiogenesis: therapeutic implications. , 1971, The New England journal of medicine.

[59]  M. Roizen,et al.  Hallmarks of Cancer: The Next Generation , 2012 .

[60]  Ruben Juanes,et al.  A phase field model of unsaturated flow , 2009 .

[61]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[62]  Vincenzo Capasso,et al.  Stochastic modelling of tumour-induced angiogenesis , 2009, Journal of mathematical biology.

[63]  Magdalena Ortiz,et al.  Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .