Adaptive fuzzy tracking control for the chaotic permanent magnet synchronous motor drive system via backstepping

Abstract An adaptive fuzzy control method is developed to suppress chaos in the permanent magnet synchronous motor drive system via backstepping technology. Fuzzy logic systems are used to approximate unknown nonlinearities and an adaptive backstepping technique is employed to construct controllers. Compared with the conventional backstepping, the designed fuzzy controllers’ structure is very simple. The simulation results indicate that the proposed control scheme can suppress the chaos of PMSM drive systems and track the reference signal successfully even under the parameter uncertainties.

[1]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[2]  Ahmad Harb,et al.  Nonlinear chaos control in a permanent magnet reluctance machine , 2004 .

[3]  F. T. Arecchi,et al.  Adaptive strategies for recognition, noise filtering, control, synchronization and targeting of chaos. , 1997, Chaos.

[4]  C. Goeldel,et al.  Aperiodic and chaotic dynamics in hybrid step motor-new experimental results , 2001, ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570).

[5]  Yen-Sheng Chen,et al.  Anti-control of chaos of single time-scale brushless DC motor. , 2006, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences.

[6]  Chuen-Chien Lee FUZZY LOGIC CONTROL SYSTEMS: FUZZY LOGIC CONTROLLER - PART I , 1990 .

[7]  K. T. Chau,et al.  Experimental stabilization of chaos in a voltage-mode DC drive system , 2000 .

[8]  Ahmad Harb,et al.  Nonlinear recursive chaos control , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[9]  B. H. Wang,et al.  Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor , 2007 .

[10]  Darren M. Dawson,et al.  Integrator backstepping control of a brush DC motor turning a robotic load , 1994, IEEE Trans. Control. Syst. Technol..

[11]  K. T. Chau,et al.  Anti-control of chaos of a permanent magnet DC motor system for vibratory compactors , 2008 .

[12]  Nejib Smaoui,et al.  Controlling chaos in the permanent magnet synchronous motor , 2009 .

[13]  Guanrong Chen,et al.  Bifurcations and chaos in a permanent-magnet synchronous motor , 2002 .

[14]  Frank L. Lewis,et al.  Robust backstepping control of induction motors using neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[15]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[16]  K. T. Chau,et al.  Modeling and analysis of chaotic behavior in switched reluctance motor drives , 2000, 2000 IEEE 31st Annual Power Electronics Specialists Conference. Conference Proceedings (Cat. No.00CH37018).

[17]  Ding Liu,et al.  Nonlinear feedback control of chaos in permanent magnet synchronous motor , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[18]  Mohamed A. Zohdy,et al.  Robust control of biped robots , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[19]  Juergen Kurths,et al.  Introduction: Control and synchronization in chaotic dynamical systems. , 2003, Chaos.

[20]  K.T. Chau,et al.  A novel chaotic-speed single-phase induction motor drive for cooling fans , 2005, Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, 2005..

[21]  S. Tong,et al.  Adaptive fuzzy approach to control unified chaotic systems , 2007 .

[22]  Yasuaki Kuroe,et al.  Analysis of bifurcation in power electronic induction motor drive systems , 1989, 20th Annual IEEE Power Electronics Specialists Conference.

[23]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[24]  J. K. Hedrick,et al.  The use of sliding modes to simplify the backstepping control method , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[25]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[26]  Zou Jibin Adaptive Backstepping Control of Permanent Magnet Synchronous Motors with Parameter Uncertainties , 2006 .

[27]  K. Chau,et al.  Hopf bifurcation and chaos in synchronous reluctance motor drives , 2004, IEEE Transactions on Energy Conversion.

[28]  Chongzhao Han,et al.  Robust adaptive tracking control for a class of uncertain chaotic systems , 2003 .

[29]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[30]  Li Jie,et al.  DELAY FEEDBACK CONTROL OF CHAOS IN PERMANENT MAGNET SYNCHRONOUS MOTOR , 2003 .