Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: An anatomical and neurophysiological study

The posterior parahippocampal gyrus (PHG) of the rhesus monkey (Macaca mulatta) is comprised of three distinct cortical areas based on cytoarchitecture, connectivity, and neurophysiological response properties. Fluorescent retrograde tracers placed in each PHG area demonstrated unique patterns of cortical afferent input to areas TH, TL, and TF. Area TF receives inputs from the multimodal cortices of the superior temporal sulcus including areas PGa, TPO, and MST, from the visuospatial parietal area PG‐Opt, and from visual areas V3A and dorsal V4. Area TL receives afferents from the inferotemporal region including visual areas TE1 and TE2 as well as from areas TEa, IPa, and FST in the lower bank and depth of the superior temporal sulcus. In contrast, the input to area TH is from the rostral part of superior temporal gyrus, including the auditory association areas TS1‐3, and from the middle sector of area TPO in the superior temporal sulcus. Frontal and cingulate areas also project to the PHG in largely differential patterns. To further investigate this a correlative electrophysiological study of the three PHG areas resulted in a confirmation of these differential cortical inputs such that visually responsive neurons were found in areas TF and TL, auditory responsive neurons or bimodal auditory/visual‐responsive neurons in area TH, and somatosensory‐responsive neurons at the TF/TL border. Since each PHG area also receives differential hippocampal input, these data suggest that the processing of unimodal or multimodal information may be related to memory processing functions that are largely segregated within areas TH, TL, and TF. J. Comp. Neurol. 466:161–179, 2003. © 2003 Wiley‐Liss, Inc.

[1]  Leslie G. Ungerleider,et al.  Visual topography of area TEO in the macaque , 1991, The Journal of comparative neurology.

[2]  D. Amaral,et al.  The entorhinal cortex of the monkey: II. Cortical afferents , 1987, The Journal of comparative neurology.

[3]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[4]  Mortimer Mishkin,et al.  Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys , 1986, Behavioural Brain Research.

[5]  D. Rosene,et al.  A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. , 1986, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[6]  D L Rosene,et al.  Fields of origin and pathways of the interhemispheric commissures in the temporal lobe of macaques , 1990, The Journal of comparative neurology.

[7]  E. Rolls,et al.  View‐responsive neurons in the primate hippocampal complex , 1995, Hippocampus.

[8]  J. Maunsell,et al.  Two‐dimensional maps of the cerebral cortex , 1980, The Journal of comparative neurology.

[9]  D. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents , 1975, Brain Research.

[10]  D. Amaral,et al.  The entorhinal cortex of the monkey: III. Subcortical afferents , 1987, The Journal of comparative neurology.

[11]  K. Rockland,et al.  Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas , 2000, The Journal of comparative neurology.

[12]  J. O’Keefe A review of the hippocampal place cells , 1979, Progress in Neurobiology.

[13]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Projections to the neocortex , 2002, The Journal of comparative neurology.

[14]  E. Rolls,et al.  Spatial View Cells in the Primate Hippocampus , 1997, The European journal of neuroscience.

[15]  M. Mesulam,et al.  THE JOURNAL OF HISTOCHEMISTRY AND CYTOCHEMISTRY , 2005 .

[16]  D L Rosene,et al.  A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal, and perirhinal cortices , 1988, The Journal of comparative neurology.

[17]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  D. Pandya,et al.  Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey , 1978, Brain Research.

[19]  M. Yukie,et al.  Connections between the medial temporal cortex and the CA1 subfield of the hippocampal formation in the japanese monkey (Macaca fuscata) , 2000, The Journal of comparative neurology.

[20]  E. Bostock,et al.  Spatial firing correlates of neurons in the hippocampal formation of freely moving rats. , 1991 .

[21]  C. Geula,et al.  Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey , 1992, The Journal of comparative neurology.

[22]  The Neocortex of Macaca mulatta. Illinois Monographs in t he Medical Sciences , 1948 .

[23]  M. W. Brown,et al.  Hippocampus and medial temporal cortex: Neuronal activity related to behavioural responses during the performance of memory tasks by primates , 1990, Behavioural Brain Research.

[24]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents , 1994, The Journal of comparative neurology.

[25]  M. Voytko Cooling orbital frontal cortex disrupts matching-to-sample and visual discrimination learning in monkeys , 1985 .

[26]  P. Goldman-Rakic,et al.  Segregation of working memory functions within the dorsolateral prefrontal cortex , 2000, Experimental Brain Research.

[27]  B M Gaymard,et al.  Lesions affecting the parahippocampal cortex yield spatial memory deficits in humans. , 2000, Cerebral cortex.

[28]  D. Amaral,et al.  Amygdalo‐cortical projections in the monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[29]  D. Pandya,et al.  Parietal, temporal, and occipita projections to cortex of the superior temporal sulcus in the rhesus monkey: A retrograde tracer study , 1994, The Journal of comparative neurology.

[30]  Y. Miyashita,et al.  Hippocampal neurons in the monkey with activity related to the place in which a stimulus is shown , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  M. D’Esposito,et al.  The parahippocampus subserves topographical learning in man , 1996, NeuroImage.

[32]  D. Pandya,et al.  Some cortical projections to the parahippocampal area in the rhesus monkey , 1976, Experimental Neurology.

[33]  D. Amaral,et al.  The entorhinal cortex of the monkey: I. Cytoarchitectonic organization , 1987, The Journal of comparative neurology.

[34]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[35]  A Engelien,et al.  The Parahippocampal Region and Auditory‐Mnemonic Processing , 2000, Annals of the New York Academy of Sciences.

[36]  L R Squire,et al.  Lesions of the hippocampal formation but not lesions of the fornix or the mammillary nuclei produce long-lasting memory impairment in monkeys , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  D. Tranel,et al.  Parahippocampal projections to posterior auditory association cortex (area Tpt) in Old-World monkeys , 2004, Experimental Brain Research.

[38]  A. Rowan Guide for the Care and Use of Laboratory Animals , 1979 .

[39]  A M Galaburda,et al.  The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey , 1983, The Journal of comparative neurology.

[40]  E T Rolls,et al.  Information about spatial view in an ensemble of primate hippocampal cells. , 1998, Journal of neurophysiology.

[41]  Deepak N. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents , 1975, Brain Research.

[42]  R. Desimone,et al.  Visual areas in the temporal cortex of the macaque , 1979, Brain Research.

[43]  K. Rockland,et al.  Some temporal and parietal cortical connections converge in CA1 of the primate hippocampus. , 1999, Cerebral cortex.

[44]  G. V. Hoesen,et al.  The parahippocampal gyrus: New observations regarding its cortical connections in the monkey , 1982, Trends in Neurosciences.

[45]  L M Saksida,et al.  The Parahippocampal Region and Object Identification , 2000, Annals of the New York Academy of Sciences.

[46]  E. Rolls,et al.  Responses of single neurons in the hippocampus of the macaque related to recognition memory , 2004, Experimental Brain Research.

[47]  D. Pandya,et al.  Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern , 1973, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[48]  D. Pandya,et al.  Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey , 1993, The Journal of comparative neurology.

[49]  D. Pandya,et al.  Efferent cortical connections of multimodal cortex of the superior temporal sulcus in the rhesus monkey , 1992, The Journal of comparative neurology.

[50]  J. A. Horel,et al.  Cortical afferents to behaviorally defined regions of the inferior temporal and parahippocampal gyri as demonstrated by WGA‐HRP , 1992, The Journal of comparative neurology.

[51]  D L Rosene,et al.  Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: Projections from CA1, prosubiculum, and subiculum to the temporal lobe , 1998, The Journal of comparative neurology.

[52]  E. Rolls,et al.  Spatial view cells in the primate hippocampus: effects of removal of view details. , 1998, Journal of neurophysiology.

[53]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[54]  W. Suzuki,et al.  Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  D. Pandya,et al.  Course of the fiber pathways to pons from parasensory association areas in the rhesus monkey , 1992, The Journal of comparative neurology.

[56]  D L Rosene,et al.  Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non‐reciprocal connections , 1988, The Journal of comparative neurology.

[57]  D. Amaral,et al.  Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys , 1996, The Journal of comparative neurology.