Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria

[1]  J. Blander,et al.  Innate immune recognition of infected apoptotic cells directs TH17 cell differentiation , 2009, Nature.

[2]  S. Way,et al.  Interleukin‐17 in host defence against bacterial, mycobacterial and fungal pathogens , 2009, Immunology.

[3]  B. Becher,et al.  RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. , 2009, Gastroenterology.

[4]  J. Kolls,et al.  Cytokine-mediated regulation of antimicrobial proteins , 2008, Nature Reviews Immunology.

[5]  J. Berzofsky,et al.  Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. , 2008, Immunity.

[6]  R Balfour Sartor,et al.  Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. , 2008, Cell host & microbe.

[7]  Masahiro Yamamoto,et al.  ATP drives lamina propria TH17 cell differentiation , 2008, Nature.

[8]  Ronald P. DeMatteo,et al.  Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits , 2008, Nature.

[9]  R. Knight,et al.  Evolution of Mammals and Their Gut Microbes , 2008, Science.

[10]  S. Mazmanian,et al.  A microbial symbiosis factor prevents intestinal inflammatory disease , 2008, Nature.

[11]  Yuelei Shen,et al.  TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function , 2008, Nature.

[12]  Christophe Benoist,et al.  The K/BxN Arthritis Model , 2008, Current protocols in immunology.

[13]  S. Sa,et al.  Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens , 2008, Nature Medicine.

[14]  R Balfour Sartor,et al.  Microbial influences in inflammatory bowel diseases. , 2008, Gastroenterology.

[15]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[16]  N. Salzman,et al.  Enteric Salmonellosis Disrupts the Microbial Ecology of the Murine Gastrointestinal Tract , 2007, Infection and Immunity.

[17]  J. Kolls,et al.  Th17 cells and mucosal host defense. , 2007, Seminars in immunology.

[18]  V. Kuchroo,et al.  TH-17 cells in the circle of immunity and autoimmunity , 2007, Nature Immunology.

[19]  M. Lebwohl,et al.  A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. , 2007, The New England journal of medicine.

[20]  C. Eun A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene. , 2007 .

[21]  Gary L. Andersen,et al.  High-Density Universal 16S rRNA Microarray Analysis Reveals Broader Diversity than Typical Clone Library When Sampling the Environment , 2007, Microbial Ecology.

[22]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[23]  Judy H. Cho,et al.  A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene , 2006, Science.

[24]  F. Powrie,et al.  Interleukin-23 drives innate and T cell–mediated intestinal inflammation , 2006, The Journal of experimental medicine.

[25]  Eoin L Brodie,et al.  Application of a High-Density Oligonucleotide Microarray Approach To Study Bacterial Population Dynamics during Uranium Reduction and Reoxidation , 2006, Applied and Environmental Microbiology.

[26]  L. Hooper,et al.  Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin , 2006, Science.

[27]  T. Mcclanahan,et al.  IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. , 2006, The Journal of clinical investigation.

[28]  R. J. Hocking,et al.  TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. , 2006, Immunity.

[29]  J. O'dell,et al.  Treatment of early seropositive rheumatoid arthritis: doxycycline plus methotrexate versus methotrexate alone. , 2006, Arthritis and rheumatism.

[30]  R. D. Hatton,et al.  Transforming growth factor-beta induces development of the T(H)17 lineage. , 2006, Nature.

[31]  D. Littman,et al.  The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. , 2006, Cell.

[32]  R. Medzhitov,et al.  Role of the innate immune system and host-commensal mutualism. , 2006, Current topics in microbiology and immunology.

[33]  C. Elson,et al.  Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota , 2005, Immunological reviews.

[34]  S. Mazmanian,et al.  An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System , 2005, Cell.

[35]  R. Sartor,et al.  Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. , 2005, Gastroenterology.

[36]  F. Bäckhed,et al.  Host-Bacterial Mutualism in the Human Intestine , 2005, Science.

[37]  T. Mcclanahan,et al.  IL-23 drives a pathogenic T cell population that induces autoimmune inflammation , 2005, The Journal of experimental medicine.

[38]  C. D. Garland,et al.  Segmented filamentous bacteria in the rodent small intestine: Their colonization of growing animals and possible role in host resistance toSalmonella , 1982, Microbial Ecology.

[39]  A. Macpherson,et al.  Interactions between commensal intestinal bacteria and the immune system , 2004, Nature Reviews Immunology.

[40]  Keiichiro Suzuki,et al.  Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  T. Mcclanahan,et al.  Divergent Pro- and Antiinflammatory Roles for IL-23 and IL-12 in Joint Autoimmune Inflammation , 2003, The Journal of experimental medicine.

[42]  A. Rudensky,et al.  Control of immune homeostasis by naturally arising regulatory CD4+ T cells. , 2003, Current opinion in immunology.

[43]  P. Toivanen,et al.  Role of peptidoglycan subtypes in the pathogenesis of bacterial cell wall arthritis , 2003, Annals of the rheumatic diseases.

[44]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[45]  F. Ramsdell,et al.  An essential role for Scurfin in CD4+CD25+ T regulatory cells , 2003, Nature Immunology.

[46]  A. Rudensky,et al.  Foxp3 programs the development and function of CD4+CD25+ regulatory T cells , 2003, Nature Immunology.

[47]  T. Nomura,et al.  Control of Regulatory T Cell Development by the Transcription Factor Foxp3 , 2002 .

[48]  L. Glimcher,et al.  Lineage commitment in the immune system: the T helper lymphocyte grows up. , 2000, Genes & development.

[49]  B. Finlay,et al.  Segmented filamentous bacteria prevent colonization of enteropathogenic Escherichia coli O103 in rabbits. , 2000, The Journal of infectious diseases.

[50]  A. Campa,et al.  A novel function of serum amyloid A: a potent stimulus for the release of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-8 by human blood neutrophil. , 2000, Biochemical and biophysical research communications.

[51]  K. Itoh,et al.  Bacteroides acidifaciens sp. nov., isolated from the caecum of mice. , 2000, International journal of systematic and evolutionary microbiology.

[52]  A. Whitehead,et al.  Serum amyloid A, the major vertebrate acute-phase reactant. , 1999, European journal of biochemistry.

[53]  F. Dewhirst,et al.  Phylogeny of the Defined Murine Microbiota: Altered Schaedler Flora , 1999, Applied and Environmental Microbiology.

[54]  A. Imaoka,et al.  Differential Roles of Segmented Filamentous Bacteria and Clostridia in Development of the Intestinal Immune System , 1999, Infection and Immunity.

[55]  N. Bos,et al.  Segmented Filamentous Bacteria Are Potent Stimuli of a Physiologically Normal State of the Murine Gut Mucosal Immune System , 1999, Infection and Immunity.

[56]  Kenneth M. Murphy,et al.  Functional diversity of helper T lymphocytes , 1996, Nature.

[57]  M. Collins,et al.  Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of "Candidatus Arthromitus". , 1995, International journal of systematic bacteriology.

[58]  A. Imaoka,et al.  Segmented Filamentous Bacteria Are Indigenous Intestinal Bacteria That Activate Intraepithelial Lymphocytes and Induce MHC Class II Molecules and Fucosyl Asialo GM1 Glycolipids on the Small Intestinal Epithelial Cells in the Ex‐Germ‐Free Mouse , 1995, Microbiology and immunology.

[59]  R. Seder Acquisition of lymphokine-producing phenotype by CD4+ T cells. , 1994, The Journal of allergy and clinical immunology.

[60]  A. Beynen,et al.  Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species , 1993, Laboratory animals.

[61]  W. Eling,et al.  Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice , 1993, Infection and immunity.

[62]  A. J. Severijnen,et al.  Cell wall fragments from major residents of the human intestinal flora induce chronic arthritis in rats. , 1989, The Journal of rheumatology.

[63]  J. Koopman,et al.  The attachment of filamentous segmented micro-organisms to the distal ileum wall of the mouse: a scanning and transmission electron microscopy study , 1987, Laboratory animals.

[64]  T. Mitsuoka,et al.  Characterization of clostridia isolated from faeces of limited flora mice and their effect on caecal size when associated with germ-free mice , 1985, Laboratory animals.

[65]  D. Savage,et al.  Habitat, Succession, Attachment, and Morphology of Segmented, Filamentous Microbes Indigenous to the Murine Gastrointestinal Tract , 1974, Infection and immunity.