METODA AUTOMATÓW KOMÓRKOWYCH - ZASTOSOWANIE W MODELOWANIU PROCESÓW PRZEMIAN FAZOWYCH

This article describes theoretical bases of the cellular automata method and their application in simulations of phase transformation processes in steel. Presented in this article, the fundamental information about cellular automata allows thorough familiarisation with the issue. The discussed models and results of simulation of phase transformation of austenite into ferrite based on the cellular automata method reveal huge potential in using this method for modelling of manufacturing processes in materials engineering.

[1]  Yoshiyuki Watanabe,et al.  Modelling of Microstructural Evolution and Mechanical Properties of Steel Plates Produced by Thermo-Mechanical Control Process , 1992 .

[2]  Tommaso Toffoli,et al.  Cellular Automata Machines , 1987, Complex Syst..

[3]  W. Baxter,et al.  Stationary and drifting spiral waves of excitation in isolated cardiac muscle , 1992, Nature.

[4]  J.-L. Desbiolles,et al.  Modeling of equiaxed microstructure formation in casting , 1989 .

[5]  M. Kumar,et al.  Competition between nucleation and early growth of ferrite from austenite-studies using cellular automaton simulations , 1998 .

[6]  Yun-tao Li,et al.  Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automaton method , 2004 .

[7]  Jilt Sietsma,et al.  Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions , 1997 .

[8]  M. Umemoto,et al.  Prediction of hardenability effects from isothermal transformation kinetics , 1980 .

[9]  J. Sietsma,et al.  Interface conditions during mixed-mode phase transformations in metals , 2008, Journal of Materials Science.

[10]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[11]  M. Militzer,et al.  Ferrite nucleation and growth during continuous cooling , 1996 .

[12]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[13]  Tommaso Toffoli,et al.  Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.

[14]  M. Rappaz,et al.  A two-dimensional diffusion model for the prediction of phase transformations: Application to austenitization and homogenization of hypoeutectoid Fe-C steels , 1997 .

[15]  Yiyi Li,et al.  A q-state Potts model-based Monte Carlo method used to model the isothermal austenite–ferrite transformation under non-equilibrium interface condition , 2005 .

[16]  R. Turk,et al.  Modeling the dynamic recrystallization under multi-stage hot deformation , 2004 .

[17]  A ROSENBLUETH,et al.  The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. , 1946, Archivos del Instituto de Cardiologia de Mexico.

[18]  Yiyi Li,et al.  Modeling the austenite-ferrite diffusive transformation during continuous cooling on a mesoscale using Monte Carlo method , 2004 .

[19]  J. Sietsma,et al.  A mixed-mode model for partitioning phase transformations , 2007 .

[20]  Jilt Sietsma,et al.  A concise model for mixed-mode phase transformations in the solid state , 2004 .

[21]  M. Johnson,et al.  Modeling of reaustenitization of hypoeutectoid steels with cellular automaton method , 2007 .