SCANPY: large-scale single-cell gene expression data analysis

Scanpy is a scalable toolkit for analyzing single-cell gene expression data. It includes methods for preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing, and simulation of gene regulatory networks. Its Python-based implementation efficiently deals with data sets of more than one million cells (https://github.com/theislab/Scanpy). Along with Scanpy, we present AnnData, a generic class for handling annotated data matrices (https://github.com/theislab/anndata).

[1]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[2]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[3]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[5]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[6]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[7]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[8]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[9]  Steffen Klamt,et al.  Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling , 2009, BMC Systems Biology.

[10]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[11]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[12]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[13]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[14]  Mark M. Davis,et al.  Automatic Classification of Cellular Expression by Nonlinear Stochastic Embedding (ACCENSE) , 2013, Proceedings of the National Academy of Sciences.

[15]  Sean C. Bendall,et al.  viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia , 2013, Nature Biotechnology.

[16]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[17]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[18]  Christoph Lippert,et al.  LIMIX: genetic analysis of multiple traits , 2014, bioRxiv.

[19]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[20]  Sean C. Bendall,et al.  Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis , 2015, Cell.

[21]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[22]  Fabian J. Theis,et al.  Diffusion maps for high-dimensional single-cell analysis of differentiation data , 2015, Bioinform..

[23]  Raphael Gottardo,et al.  Orchestrating high-throughput genomic analysis with Bioconductor , 2015, Nature Methods.

[24]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[25]  Fabian J Theis,et al.  Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells , 2015, Nature Biotechnology.

[26]  Chen Xu,et al.  Identification of cell types from single-cell transcriptomes using a novel clustering method , 2015, Bioinform..

[27]  Thomas M. Norman,et al.  Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens , 2016, Cell.

[28]  Fabian J Theis,et al.  Diffusion pseudotime robustly reconstructs lineage branching , 2016, Nature Methods.

[29]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[30]  Lorenzo Trippa,et al.  Robust lineage reconstruction from high-dimensional single-cell data , 2016, bioRxiv.

[31]  A. Regev,et al.  Revealing the vectors of cellular identity with single-cell genomics , 2016, Nature Biotechnology.

[32]  Davis J. McCarthy,et al.  A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor , 2016, F1000Research.

[33]  Fabian J. Theis,et al.  destiny: diffusion maps for large-scale single-cell data in R , 2015, Bioinform..

[34]  Nir Yosef,et al.  FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data , 2016, BMC Bioinformatics.

[35]  Sean C. Bendall,et al.  Wishbone identifies bifurcating developmental trajectories from single-cell data , 2016, Nature Biotechnology.

[36]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[37]  Aaron T. L. Lun,et al.  beachmat: a Bioconductor C++ API for accessing single-cell genomics data from a variety of R matrix types , 2017, bioRxiv.

[38]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[39]  Fabian J Theis,et al.  Single cells make big data: New challenges and opportunities in transcriptomics , 2017 .

[40]  Valentine Svensson,et al.  Power Analysis of Single Cell RNA-Sequencing Experiments , 2016, Nature Methods.

[41]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[42]  Aaron T. L. Lun,et al.  Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R , 2017, Bioinform..

[43]  Alexis Boukouvalas,et al.  GPflow: A Gaussian Process Library using TensorFlow , 2016, J. Mach. Learn. Res..

[44]  Anne E Carpenter,et al.  Reconstructing cell cycle and disease progression using deep learning , 2017, Nature Communications.

[45]  Davis J. McCarthy,et al.  f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq , 2017, Genome Biology.

[46]  Caleb Weinreb,et al.  SPRING: a kinetic interface for visualizing high dimensional single-cell expression data , 2017, bioRxiv.