Modeling Soft Conditions with Unequal Importance in Fuzzy Databases based on the Vector p-norm

In this paper a modeling of soft selection conditions with preferences in fuzzy databases is proposed based on the vector p-norm operator. We outline the semantics of the compound query when the selection conditions are ANDed and ORed for increasing values of the parameter p.

[1]  Valiollah Tahani,et al.  A conceptual framework for fuzzy query processing - A step toward very intelligent database systems , 1977, Inf. Process. Manag..

[2]  B. Buckles,et al.  A fuzzy representation of data for relational databases , 1982 .

[3]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[4]  G. Salton,et al.  Extended Boolean information retrieval , 1983, CACM.

[5]  Masahito Hirakawa,et al.  ARES: A relational database with the capability of performing flexible interpretation of queries , 1986, IEEE Transactions on Software Engineering.

[6]  Janusz Kacprzyk,et al.  Database Queries with Fuzzy Linguistic Quantifiers , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  M. Lacroix,et al.  Preferences; Putting More Knowledge into Queries , 1987, VLDB.

[8]  Amihai Motro,et al.  VAGUE: a user interface to relational databases that permits vague queries , 1988, TOIS.

[9]  D. Dubois,et al.  Weighted fuzzy pattern matching , 1988 .

[10]  J. Kacprzyk,et al.  Fquery for Access: Fuzzy Querying for a Windows-Based DBMS , 1995 .

[11]  Patrick Bosc,et al.  SQLf: a relational database language for fuzzy querying , 1995, IEEE Trans. Fuzzy Syst..

[12]  Didier Dubois,et al.  Using fuzzy sets in flexible querying: why and how? , 1997 .

[13]  Janusz Kacprzyk,et al.  Implementation of OWA operators in fuzzy querying for Microsoft Access , 1997 .

[14]  Michel Grabisch,et al.  Fuzzy aggregation of numerical preferences , 1999 .

[15]  José Galindo,et al.  Querying fuzzy relational databases through fuzzy domain calculus , 1999, Int. J. Intell. Syst..

[16]  H. Larsen,et al.  Importance weighted OWA aggregation of multicriteria queries , 1999, 18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397).

[17]  Rakesh Agrawal,et al.  A framework for expressing and combining preferences , 2000, SIGMOD '00.

[18]  Leonid José Tineo Rodríguez Extending RDBMS for Allowing Fuzzy Quantified Queries , 2000, DEXA.

[19]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[20]  Luis Gravano,et al.  Top-k selection queries over relational databases: Mapping strategies and performance evaluation , 2002, TODS.

[21]  Werner Kießling,et al.  Preference SQL - Design, Implementation, Experiences , 2002, VLDB.

[22]  Jan Chomicki,et al.  Preference formulas in relational queries , 2003, TODS.

[23]  Aristides Gionis,et al.  Automated Ranking of Database Query Results , 2003, CIDR.

[24]  Hai Leong Toh Hong Kong 2002 , 2003 .

[25]  Bernard De Baets,et al.  Aggregating constraint satisfaction degrees expressed by possibilistic truth values , 2003, IEEE Trans. Fuzzy Syst..

[26]  José Galindo,et al.  Fuzzy Databases: Modeling, Design, and Implementation , 2006 .

[27]  S. Skrbic,et al.  Comparing priority, weighted and queries with threshold in PFSQL , 2007, 2007 5th International Symposium on Intelligent Systems and Informatics.

[28]  Gloria Bordogna,et al.  A flexible approach to evaluating soft conditions with unequal preferences in fuzzy databases: Research Articles , 2007 .

[29]  Gloria Bordogna,et al.  A flexible approach to evaluating soft conditions with unequal preferences in fuzzy databases , 2007, Int. J. Intell. Syst..

[30]  José Galindo,et al.  Handbook of Research on Fuzzy Information Processing in Databases , 2008, Handbook of Research on Fuzzy Information Processing in Databases.

[31]  Gloria Bordogna,et al.  Customizable Flexible Querying in Classical Relational Databases , 2008, Handbook of Research on Fuzzy Information Processing in Databases.