Molecular Mechanisms of Antibacterial Multidrug Resistance

Treatment of infections is compromised worldwide by the emergence of bacteria that are resistant to multiple antibiotics. Although classically attributed to chromosomal mutations, resistance is most commonly associated with extrachromosomal elements acquired from other bacteria in the environment. These include different types of mobile DNA segments, such as plasmids, transposons, and integrons. However, intrinsic mechanisms not commonly specified by mobile elements-such as efflux pumps that expel multiple kinds of antibiotics-are now recognized as major contributors to multidrug resistance in bacteria. Once established, multidrug-resistant organisms persist and spread worldwide, causing clinical failures in the treatment of infections and public health crises.

[1]  Matthew E Falagas,et al.  Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[2]  J Davies,et al.  Bacterial resistance to aminoglycoside antibiotics. , 1997, The Journal of infectious diseases.

[3]  B. Spratt,et al.  Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. , 1995, Microbiology.

[4]  G. Jacoby,et al.  Quinolone resistance from a transferable plasmid , 1998, The Lancet.

[5]  V. Bidnenko,et al.  Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[6]  S. Connell,et al.  Ribosomal Protection Proteins and Their Mechanism of Tetracycline Resistance , 2003, Antimicrobial Agents and Chemotherapy.

[7]  B. Weisblum Macrolide resistance , 1998, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[8]  W. Schaffner,et al.  Novel Mechanism of Resistance to Oxazolidinones, Macrolides, and Chloramphenicol in Ribosomal Protein L4 of the Pneumococcus , 2005, Antimicrobial Agents and Chemotherapy.

[9]  J. A. Andrews,et al.  Linezolid resistance in clinical isolates of Staphylococcus aureus. , 2003, The Journal of antimicrobial chemotherapy.

[10]  H. Gold,et al.  Antimicrobial resistance to linezolid. , 2004, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[11]  D. Rubin,et al.  Methicillin resistant staphylococci. , 1971, JAMA.

[12]  S. Levy,et al.  Active efflux mechanisms for antimicrobial resistance , 1992, Antimicrobial Agents and Chemotherapy.

[13]  A. Yamaguchi,et al.  Multidrug-exporting secondary transporters. , 2003, Current opinion in structural biology.

[14]  R. Skurray,et al.  Physical and biochemical characterization of the qacA gene encoding antiseptic and disinfectant resistance in Staphylococcus aureus. , 1989, Journal of general microbiology.

[15]  S. Polly The Antibiotic Paradox: How the Misuse of Antibiotics Destroys Their Curative Powers , 2002 .

[16]  S. Levy,et al.  Ineffectiveness of Topoisomerase Mutations in Mediating Clinically Significant Fluoroquinolone Resistance inEscherichia coli in the Absence of the AcrAB Efflux Pump , 2000, Antimicrobial Agents and Chemotherapy.

[17]  M. Schumacher,et al.  Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors , 2002, Molecular microbiology.

[18]  Brad Spellberg,et al.  Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. , 2005, The New England journal of medicine.

[19]  D. Hughes,et al.  Sampling the Antibiotic Resistome , 2006, Science.

[20]  L. McMurry,et al.  Tetracycline resistance: Efflux, Mutations and, Other Mechanisms , 2005 .

[21]  Anthony Maxwell,et al.  A Fluoroquinolone Resistance Protein from Mycobacterium tuberculosis That Mimics DNA , 2005, Science.

[22]  O. Sköld Resistance to trimethoprim and sulfonamides. , 2001, Veterinary research.

[23]  A. Mohan,et al.  Multidrug-resistant tuberculosis. , 2004, The Indian journal of medical research.

[24]  J. Karlowsky,et al.  Review of macrolides and ketolides: focus on respiratory tract infections. , 2001, Drugs.

[25]  O. Chesneau,et al.  Molecular Analysis of Resistance to Streptogramin A Compounds Conferred by the Vga Proteins of Staphylococci , 2005, Antimicrobial Agents and Chemotherapy.

[26]  Susan K. Johnson,et al.  Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. , 2003, JAMA.

[27]  G. Jacoby,et al.  The new beta-lactamases. , 2005, The New England journal of medicine.

[28]  N. Vázquez-Laslop,et al.  Efflux of the Natural Polyamine Spermidine Facilitated by the Bacillus subtilis Multidrug Transporter Blt* , 1997, The Journal of Biological Chemistry.

[29]  M. Zervos,et al.  Quinupristin-dalfopristin resistance in gram-positive bacteria: mechanism of resistance and epidemiology. , 2004, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[30]  P. Bradford,et al.  Influence of Transcriptional Activator RamA on Expression of Multidrug Efflux Pump AcrAB and Tigecycline Susceptibility in Klebsiella pneumoniae , 2005, Antimicrobial Agents and Chemotherapy.

[31]  E. Kuipers,et al.  16S rRNA Mutation-Mediated Tetracycline Resistance in Helicobacter pylori , 2002, Antimicrobial Agents and Chemotherapy.

[32]  G. Sensabaugh,et al.  Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus , 2006, The Lancet.

[33]  G. Alangaden,et al.  Mechanism of Resistance to Amikacin and Kanamycin in Mycobacterium tuberculosis , 1998, Antimicrobial Agents and Chemotherapy.

[34]  R. Skurray,et al.  Regulation of Bacterial Drug Export Systems , 2002, Microbiology and Molecular Biology Reviews.

[35]  T. Stanton,et al.  Isolation of Tetracycline-Resistant Megasphaera elsdenii Strains with Novel Mosaic Gene Combinations of tet(O) and tet(W) from Swine , 2003, Applied and Environmental Microbiology.

[36]  A. Yamaguchi,et al.  Effects of Efflux Transporter Genes on Susceptibility of Escherichia coli to Tigecycline (GAR-936) , 2004, Antimicrobial Agents and Chemotherapy.

[37]  L. Cui,et al.  Correlation between Reduced Daptomycin Susceptibility and Vancomycin Resistance in Vancomycin-Intermediate Staphylococcus aureus , 2006, Antimicrobial Agents and Chemotherapy.

[38]  S. Levy,et al.  Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man , 1976, Nature.

[39]  K. Drlica,et al.  Fluoroquinolones: action and resistance. , 2003, Current topics in medicinal chemistry.

[40]  D. Musher,et al.  Emergence of macrolide resistance during treatment of pneumococcal pneumonia. , 2002, The New England journal of medicine.

[41]  J. Cove,et al.  16S rRNA Mutation Associated with Tetracycline Resistance in a Gram-Positive Bacterium , 1998, Antimicrobial Agents and Chemotherapy.

[42]  G. Jacoby,et al.  Mechanism of plasmid-mediated quinolone resistance , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  E. Molto,et al.  Fluorochrome labelling in Roman period skeletons from Dakhleh Oasis, Egypt. , 1989, American journal of physical anthropology.

[44]  Patrice Courvalin,et al.  Vancomycin resistance in gram-positive cocci. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[45]  S. Levy,et al.  Role for Tandem Duplication and Lon Protease in AcrAB-TolC- Dependent Multiple Antibiotic Resistance (Mar) in an Escherichia coli Mutant without Mutations in marRAB or acrRAB , 2006, Journal of bacteriology.

[46]  P. Courvalin,et al.  Two New Mechanisms of Macrolide Resistance in Clinical Strains ofStreptococcus pneumoniae from Eastern Europe and North America , 2000, Antimicrobial Agents and Chemotherapy.

[47]  D. Mazel,et al.  A distinctive class of integron in the Vibrio cholerae genome. , 1998, Science.

[48]  J. Rood,et al.  The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline‐resistance determinants , 1994, Molecular microbiology.

[49]  J. Shetty,et al.  Genetic Analysis of a High-Level Vancomycin-Resistant Isolate of Staphylococcus aureus , 2003, Science.

[50]  M. Jacobs Drug-resistant Streptococcus pneumoniae: rational antibiotic choices. , 1999, The American journal of medicine.

[51]  Patrick F. McDermott,et al.  Frontiers in antimicrobial resistance: a tribute to Stuart B. Levy. , 2005 .

[52]  P. Courvalin Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria , 1994, Antimicrobial Agents and Chemotherapy.

[53]  S. Amyes,et al.  Role of AcrR and RamA in Fluoroquinolone Resistance in Clinical Klebsiella pneumoniae Isolates from Singapore , 2003, Antimicrobial Agents and Chemotherapy.

[54]  A. Robicsek,et al.  Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase , 2006, Nature Medicine.

[55]  G. Stein,et al.  Tigecycline: a critical analysis. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[56]  P. Nordmann,et al.  Characterization of Class 1 Integrons from Pseudomonas aeruginosa That Contain the blaVIM-2Carbapenem-Hydrolyzing β-Lactamase Gene and of Two Novel Aminoglycoside Resistance Gene Cassettes , 2001, Antimicrobial Agents and Chemotherapy.

[57]  Toshiki Maruyama,et al.  Novel Mechanism of Antibiotic Resistance Originating in Vancomycin-Intermediate Staphylococcus aureus , 2006, Antimicrobial Agents and Chemotherapy.

[58]  D. Hughes,et al.  Tigecycline is modified by the flavin-dependent monooxygenase TetX. , 2005, Biochemistry.

[59]  S Chattopadhyay,et al.  Production of L-dopa by Aspergillus terreus. , 1990, FEMS microbiology letters.

[60]  M. Barber Staphylococcal Infection due to Penicillin-resistant Strains , 1947, British medical journal.

[61]  A. Levin,et al.  Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. , 1999, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[62]  S. Mobashery,et al.  β-Lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome , 2005, Cellular and Molecular Life Sciences.

[63]  Frederic M. Sapunaric,et al.  Frontiers in Antimicrobial Resistance: A Tribute to Stuart B. Levy , 2005 .

[64]  L. Friedman,et al.  Genetic Changes That Correlate with Reduced Susceptibility to Daptomycin in Staphylococcus aureus , 2006, Antimicrobial Agents and Chemotherapy.

[65]  S. Levy,et al.  Differential Expression of over 60 Chromosomal Genes in Escherichia coli by Constitutive Expression of MarA , 2000, Journal of bacteriology.

[66]  Alladi Mohan,et al.  Multidrug-resistant tuberculosis: a menace that threatens to destabilize tuberculosis control. , 2006, Chest.

[67]  Didier Mazel,et al.  Integrons: agents of bacterial evolution , 2006, Nature Reviews Microbiology.

[68]  S. Levy,et al.  Increased Genome Instability in Escherichia coli lon Mutants: Relation to Emergence of Multiple-Antibiotic-Resistant (Mar) Mutants Caused by Insertion Sequence Elements and Large Tandem Genomic Amplifications , 2007, Antimicrobial Agents and Chemotherapy.

[69]  S. Levy,et al.  Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[70]  P. Stewart,et al.  Amplification of a section of chromosomal DNA in methicillin-resistant Staphylococcus aureus following growth in high concentrations of methicillin. , 1988, Journal of general microbiology.

[71]  E. Greenberg,et al.  Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[72]  R. Hancock,et al.  Negative Regulation of the Pseudomonas aeruginosa Outer Membrane Porin OprD Selective for Imipenem and Basic Amino Acids , 1999, Antimicrobial Agents and Chemotherapy.

[73]  D. Albertson,et al.  Gene amplification in cancer. , 2006, Trends in genetics : TIG.

[74]  S. Schwarz,et al.  Molecular basis of bacterial resistance to chloramphenicol and florfenicol. , 2004, FEMS microbiology reviews.

[75]  W. Noble,et al.  Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. , 1992, FEMS microbiology letters.

[76]  Y. Fukuchi,et al.  Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin , 1997, The Lancet.

[77]  V. Perreten,et al.  A New Sulfonamide Resistance Gene (sul3) in Escherichia coli Is Widespread in the Pig Population of Switzerland , 2003, Antimicrobial Agents and Chemotherapy.

[78]  I. Friedmann Staphylococcal Infection due to Penicillin-resistant Strains , 1948, British medical journal.

[79]  S. Levy,et al.  Antibacterial resistance worldwide: causes, challenges and responses , 2004, Nature Medicine.

[80]  J. Quinn,et al.  Development of Daptomycin Resistance In Vivo in Methicillin-Resistant Staphylococcus aureus , 2005, Journal of Clinical Microbiology.

[81]  M. Roberts Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics , 2004, Molecular biotechnology.

[82]  D. Hoban,et al.  Mechanisms of resistance to telithromycin in Streptococcus pneumoniae. , 2005, The Journal of antimicrobial chemotherapy.

[83]  Angela Lee,et al.  Use of a Genetic Approach To Evaluate the Consequences of Inhibition of Efflux Pumps in Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.