High-resolution modal analysis
暂无分享,去创建一个
[1] S. M. Dickinson,et al. Improved approximate expressions for the natural frequencies of isotropic and orthotropic rectangular plates , 1985 .
[2] E. Skudrzyk. The mean-value method of predicting the dynamic response of complex vibrators , 1980 .
[3] Thomas Kailath,et al. ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..
[4] Robin S. Langley,et al. A wave intensity technique for the analysis of high frequency vibrations , 1992 .
[5] Richard H. Lyon,et al. Theory and Application of Statistical Energy Analysis, Second Edition , 1995 .
[6] V. Pisarenko. The Retrieval of Harmonics from a Covariance Function , 1973 .
[7] Robin S. Langley. Spatially Averaged Frequency Response Envelopes For One- And Two-dimensional Structural Components , 1994 .
[8] Stephen P. Timoshenko,et al. Vibration Problems in Engineering - fourth edition , 1974 .
[9] S. Hurlebaus. Calculation of eigenfrequencies for rectangular free orthotropic plates – An overview , 2007 .
[10] G. Maidanik,et al. Response of Ribbed Panels to Reverberant Acoustic Fields , 1962 .
[11] P. S. Nair,et al. CRITICAL AND COINCIDENCE FREQUENCIES OF FLAT PANELS , 1997 .
[12] Roland Badeau,et al. A new perturbation analysis for signal enumeration in rotational invariance techniques , 2006, IEEE Transactions on Signal Processing.
[13] Eugen J. Skudrzyk,et al. Vibrations of a System with a Finite or an Infinite Number of Resonances , 1958 .
[14] R. D. Mindlin,et al. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .
[15] Ralph Otto Schmidt,et al. A signal subspace approach to multiple emitter location and spectral estimation , 1981 .
[16] Kenneth G. McConnell,et al. Modal testing , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[17] A. Love. A treatise on the mathematical theory of elasticity , 1892 .
[18] A. Chaigne,et al. Time-domain simulation of damped impacted plates. I. Theory and experiments. , 2001, The Journal of the Acoustical Society of America.
[19] Adnan D. Mohammed,et al. A study of uncertainty in applications of sea to coupled beam and plate systems, part I: Computational experiments , 1992 .
[20] Tapan K. Sarkar,et al. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..
[21] G. B. Warburton,et al. The Vibration of Rectangular Plates , 1954 .
[22] J. Laroche. The use of the matrix pencil method for the spectrum analysis of musical signals , 1993 .
[23] Stephen P. Timoshenko,et al. Vibration problems in engineering , 1928 .
[24] G. M.,et al. A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.
[25] Mohamed Ichchou,et al. Piano soundboard: structural behavior, numerical and experimental study in the modal range , 2003 .
[26] Roland Badeau,et al. Méthodes à haute résolution pour l'estimation et le suivi de sinusoïdes modulées. Application aux signaux de musique , 2005 .
[27] Angelo Farina,et al. Advancements in Impulse Response Measurements by Sine Sweeps , 2007 .
[28] A. Love,et al. A treatise on the mathematical theory , 1944 .
[29] D. C. Hodgson,et al. Book Review : Fundamentals of Noise and Vibration Analysis for Engineers: M.P. Norton Cambridge University Press Cambridge, UK 1989, 619 pp, $95 (hard cover) $37.50 (paperback) , 1990 .