RADIUS DETERMINATION OF SOLAR-TYPE STARS USING ASTEROSEISMOLOGY: WHAT TO EXPECT FROM THE KEPLER MISSION

For distant stars, as observed by the NASA Kepler satellite, parallax information is currently of fairly low quality and is not complete. This limits the precision with which the absolute sizes of the stars and their potential transiting planets can be determined by traditional methods. Asteroseismology will be used to aid the radius determination of stars observed during NASA’s Kepler mission. We report on the recent asteroFLAG hare-and-hounds Exercise#2, where a group of “hares” simulated data of F–K main-sequence stars that a group of “hounds” sought to analyze, aimed at determining the stellar radii. We investigated stars in the range 9 <V <15, both with and without parallaxes. We further test different uncertainties in Teff, and compare results with and without using asteroseismic constraints. Based on the asteroseismic large frequency spacing, obtained from simulations of 4 yr time series data from the Kepler mission, we demonstrate that the stellar radii can be correctly and precisely determined, when combined with traditional stellar parameters from the Kepler Input Catalogue. The radii found by the various methods used by each independent hound generally agree with the true values of the artificial stars to within 3%, when the large frequency spacing is used. This is 5–10 times better than the results where seismology is not applied. These results give strong confidence that radius estimation can be performed to better than 3% for solar-like stars using automatic pipeline reduction. Even when the stellar distance and luminosity are unknown we can obtain the same level of agreement. Given the uncertainties used for this exercise we find that the input log g and parallax do not help to constrain the radius, and that Teff and metallicity are the only parameters we need in addition to the large frequency spacing. It is the uncertainty in the metallicity that dominates the uncertainty in the radius.

[1]  P. Bonifacio,et al.  The photospheric solar oxygen project. I. Abundance analysis of atomic lines and influence of atmosp , 2008, 0805.4398.

[2]  Space Science Reviews , 1962, Nature.

[3]  Michel Casse,et al.  Origin and evolution of the elements , 1993 .

[4]  D. G. Hummer,et al.  Stellar Atmospheres: Beyond Classical Models , 1991 .

[5]  I. Ribas,et al.  The mass dependence of the overshooting parameter determined from eclipsing binary data , 2000 .

[6]  M. Asplund,et al.  The Solar Chemical Composition , 2007 .

[7]  H. M. Antia,et al.  CONSTRAINING SOLAR ABUNDANCES USING HELIOSEISMOLOGY , 2004, astro-ph/0403485.

[8]  Michel Breger,et al.  Communications in Asteroseismology , 2009 .

[9]  R. Emden,et al.  The Internal Constitution of the Stars , 1927, Naturwissenschaften.

[10]  P. Flower,et al.  Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections , 1996 .

[11]  I. Roxburgh,et al.  Physical processes in astrophysics , 1995 .

[12]  P. Morel CESAM: A code for stellar evolution calculations , 1997 .

[13]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. I. Scaled Solar Models and Isochrones , 2004, astro-ph/0405193.

[14]  Jørgen Christensen-Dalsgaard,et al.  ASTEC—the Aarhus STellar Evolution Code , 2007, 0710.3114.

[15]  F. Minh,et al.  Numerical solution of stellar nonradial oscillations: the Galerkin and B-Splines method , 1995 .

[16]  P. Morel,et al.  CESAM: a free code for stellar evolution calculations , 2008, 0801.2019.

[17]  N. Grevesse,et al.  In: Origin and Evolution of the elements , 1993 .

[18]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[19]  H. Kjeldsen,et al.  CoRoT sounds the stars: p-mode parameters of Sun-like oscillations on HD 49933 , 2008 .

[20]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[21]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[22]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[23]  A. Moya,et al.  Non-adiabatic theoretical observables in $\delta$ Scuti stars , 2003, astro-ph/0310894.

[24]  Don A. VandenBerg,et al.  Empirically Constrained Color-Temperature Relations. I. BV(RI)C , 2003 .

[25]  Hans Kjeldsen,et al.  TO APPEAR IN APJ LETTERS Preprint typeset using LATEX style emulateapj v. 10/09/06 CORRECTING STELLAR OSCILLATION FREQUENCIES FOR NEAR-SURFACE EFFECTS , 2022 .

[26]  Forrest J. Rogers,et al.  Opal equation-of-state tables for astrophysical applications , 1996 .

[27]  R. Davies,et al.  Astronomical Society of the Pacific Conference Series , 2010 .

[28]  M. Tassoul,et al.  Asymptotic approximations for stellar nonradial pulsations , 1980 .

[29]  S. Sousa,et al.  AsteroFLAG: first results from hare-and-hounds exercise #1 , 2008, 0803.4143.

[30]  William J. Chaplin,et al.  On model predictions of the power spectral density of radial solar p modes , 2005 .

[31]  J. Christensen-Dalsgaard ESTA – TASK 1 and TASK 3 comparison of the internal structure and seismic properties of representative stellar models Comparisons between the ASTEC , CESAM , CLES , GARSTEC and STAROX codes , 2008 .

[32]  David R. Alexander,et al.  Low-Temperature Rosseland Opacities , 1975 .

[33]  David R. Alexander,et al.  Low-Temperature Opacities , 2005, astro-ph/0502045.

[34]  J. Suárez,et al.  filou oscillation code , 2008, 0803.2498.

[35]  M. Monteiro,et al.  Porto Oscillation Code (posc) , 2008, 0804.1149.

[36]  Arthur Eddington,et al.  The Internal Constitution of the Stars , 1928, The Mathematical Gazette.

[37]  David Tytler,et al.  ASTROPHYSICAL APPLICATIONS OF POWERFUL NEW DATABASES , 1995 .

[38]  A. Moya,et al.  Granada oscillation code (GraCo) , 2007, 0711.2590.

[39]  P. Aguer,et al.  A compilation of charged-particle induced thermonuclear reaction rates , 1999 .

[40]  Jørgen Christensen-Dalsgaard,et al.  ADIPLS—the Aarhus adiabatic oscillation package , 2007, 0710.3106.

[41]  T. Henning,et al.  Transiting Extrasolar Planets Workshop , 2007 .

[42]  D. Queloz,et al.  Spectroscopic parameters for 451 stars in the HARPS GTO planet search program - Stellar [Fe/H] and the frequency of exo-Neptunes , 2008, 0805.4826.

[43]  Robert L. Kurucz,et al.  New Opacity Calculations , 1991 .

[44]  France.,et al.  A standard stellar library for evolutionary synthesis - II. The M dwarf extension , 1997, astro-ph/9710350.