Quantum superintegrability and exact solvability in n dimensions
暂无分享,去创建一个
[1] E. Kalnins. Separation of variables for Riemannian spaces of constant curvature , 1986 .
[2] Completeness of superintegrability in two-dimensional constant-curvature spaces , 2001, math-ph/0102006.
[3] Peter J. Olver,et al. Normalizability of one-dimensional quasi-exactly solvable Schrödinger operators , 1993 .
[4] W. PauliJr.. Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik , 1926 .
[5] A. Turbiner. Quasi-exactly-solvable problems andsl(2) algebra , 1988 .
[6] W. Miller,et al. The Group $O(4)$, Separation of Variables and the Hydrogen Atom , 1976 .
[7] Jamil Daboul,et al. The Hydrogen algebra as centerless twisted Kac-Moody algebra , 1993 .
[8] P. Winternitz,et al. A systematic search for nonrelativistic systems with dynamical symmetries , 1967 .
[9] W. Miller,et al. Completeness of multiseparable superintegrability in E2,C , 2000 .
[10] Evans,et al. Superintegrability in classical mechanics. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[11] M. Shifman. NEW FINDINGS IN QUANTUM MECHANICS (PARTIAL ALGEBRAIZATION OF THE SPECTRAL PROBLEM) , 1989 .
[12] N. Vilenkin. Special Functions and the Theory of Group Representations , 1968 .
[13] P. Winternitz,et al. ON HIGHER SYMMETRIES IN QUANTUM MECHANICS , 1965 .
[14] Superintegrability in a two-dimensional space of nonconstant curvature , 2001, math-ph/0108015.
[15] Jamil Daboul,et al. From hydrogen atom to generalized Dynkin diagrams , 1998 .
[16] Alexander Turbiner. Lie-algebras and linear operators with invariant subspaces , 1993 .
[17] E. L. Hill,et al. On the Problem of Degeneracy in Quantum Mechanics , 1940 .
[18] P. Winternitz,et al. A new basis for the representations of the rotation group. Lamé and Heun polynomials , 1973 .
[19] V. Fock,et al. Zur Theorie des Wasserstoffatoms , 1935 .
[20] H. McIntosh. Symmetry and Degeneracy , 1971 .
[21] P. Winternitz,et al. Separation of variables and subgroup bases on n-dimensional hyperboloids , 2002 .
[22] N. Evans. Group theory of the Smorodinsky-Winternitz system , 1991 .
[23] W. Jr. Pauli,et al. Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik , 1926 .
[24] J. W. Humberston. Classical mechanics , 1980, Nature.
[25] P. Winternitz,et al. Contractions of Lie algebras and separation of variables. The n -dimensional sphere , 1999 .
[26] W. Miller,et al. Subgroups of Lie groups and separation of variables , 1981 .
[27] Ernest M. Loebl,et al. Group theory and its applications , 1968 .
[28] Exact solvability of superintegrable systems , 2000, hep-th/0011209.
[29] W. Miller,et al. Completeness of multiseparable superintegrability on the complex 2-sphere , 2000 .
[30] P. Tempesta,et al. Superintegrable systems in quantum mechanics and classical Lie theory , 2001 .
[31] N. Evans. Super-integrability of the Winternitz system , 1990 .
[32] M. J. Englefield. Group Theory and the Coulomb Problem , 1974 .
[33] Y. Smorodinskii,et al. SYMMETRY GROUPS IN CLASSICAL AND QUANTUM MECHANICS , 1966 .
[34] M. Moshinsky,et al. The harmonic oscillator in modern physics , 1996 .
[35] V. Bargmann,et al. Zur Theorie des Wasserstoffatoms , 1936 .
[36] P. Winternitz,et al. QUANTUM NUMBERS IN THE LITTLE GROUPS OF THE POINCARE GROUP. , 1966 .
[37] B. Dorizzi,et al. Coupling-Constant Metamorphosis and Duality between Integrable Hamiltonian Systems , 1984 .
[38] W. Miller,et al. Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions , 1996 .