Non-Uniform Bounds in the Poisson Approximation With Applications to Informational Distances I

We explore asymptotically optimal bounds for deviations of Bernoulli convolutions from the Poisson limit in terms of the Shannon relative entropy and the Pearson <inline-formula> <tex-math notation="LaTeX">$\chi ^{2}$ </tex-math></inline-formula>-distance. The results are based on proper non-uniform estimates for densities. This part deals with the so-called non-degenerate case.

[1]  L. L. Cam,et al.  An approximation theorem for the Poisson binomial distribution. , 1960 .

[2]  Peter Harremoës,et al.  Rényi Divergence and Kullback-Leibler Divergence , 2012, IEEE Transactions on Information Theory.

[3]  Peter Harremoës,et al.  Binomial and Poisson distributions as maximum entropy distributions , 2001, IEEE Trans. Inf. Theory.

[4]  J. L. Hodges,et al.  The Poisson Approximation to the Poisson Binomial Distribution , 1960 .

[5]  B. Roos On the Rate of Multivariate Poisson Convergence , 1999 .

[6]  T. A. Azlarov,et al.  Refinements of Yu. V. Prokhorov's theorems on the asymptotic behavior of the binomial distribution , 1987 .

[7]  Verallgemeinerung eines Satzes von Prochorow und Le Cam , 1964 .

[8]  W. Vervaat,et al.  Upper bounds for the distance in total variation between the binomial or negative binomial and the Poisson distribution , 1969 .

[9]  Vydas Čekanavičius Approximation Methods in Probability Theory , 2016 .

[10]  M. Romanowska A note on the upper bound for the distance in total variation between the binomal and the Poisson distribution , 1977 .

[11]  Oliver Johnson,et al.  A proof of the Shepp-Olkin entropy concavity conjecture , 2015, ArXiv.

[12]  I. Vajda Theory of statistical inference and information , 1989 .

[13]  Hsien-Kuei Hwang,et al.  A Charlier–Parseval approach to poisson approximation and its applications , 2008, 0810.4756.

[14]  K. F. Andersen Weighted inequalities for iterated convolutions , 1999 .

[15]  O. Johnson Information Theory And The Central Limit Theorem , 2004 .

[16]  Peter Harremoës,et al.  Rate of convergence to Poisson law in terms of information divergence , 2004, IEEE Transactions on Information Theory.

[17]  L. L. Cam,et al.  Asymptotic Methods In Statistical Decision Theory , 1986 .

[18]  Oliver Johnson,et al.  Thinning and information projections , 2008, 2008 IEEE International Symposium on Information Theory.

[19]  Igal Sason,et al.  Improved Lower Bounds on the Total Variation Distance for the Poisson Approximation , 2013, 1301.7504.

[20]  Oliver Johnson,et al.  Entropy and the law of small numbers , 2005, IEEE Transactions on Information Theory.

[21]  P. Hall,et al.  On the rate of Poisson convergence , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  S. Bobkov,et al.  Nonuniform bounds in the Poisson approximation with applications to informational distances. II , 2019, Lithuanian Mathematical Journal.

[23]  Louis H. Y. Chen Poisson Approximation for Dependent Trials , 1975 .

[24]  Igal Sason,et al.  Entropy Bounds for Discrete Random Variables via Maximal Coupling , 2012, IEEE Transactions on Information Theory.

[25]  E. Valkeila A general poisson approximation theorem , 1982 .