Models, Entropy and Information of Temporal Social Networks

Temporal social networks are characterized by heterogeneous duration of contacts, which can either follow a power-law distribution, such as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone communication. Here we model the dynamics of face-to-face interaction and mobile phone communication by a reinforcement dynamics, which explains the data observed in these different types of social interactions. We quantify the information encoded in the dynamics of these networks by the entropy of temporal networks. Finally, we show evidence that human dynamics is able to modulate the information present in social network dynamics when it follows circadian rhythms and when it is interfacing with a new technology such as the mobile-phone communication technology.

[1]  Ginestra Bianconi,et al.  The Dynamics of Group Formation Among Leeches , 2012, Front. Physio..

[2]  S. Havlin,et al.  Scaling laws of human interaction activity , 2009, Proceedings of the National Academy of Sciences.

[3]  A. Barabasi,et al.  Impact of non-Poissonian activity patterns on spreading processes. , 2006, Physical review letters.

[4]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[5]  H. Stanley,et al.  Dynamic networks and directed percolation , 2009, 0901.4563.

[6]  Adilson E. Motter,et al.  A Poissonian explanation for heavy tails in e-mail communication , 2008, Proceedings of the National Academy of Sciences.

[7]  Alex Pentland,et al.  Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.

[8]  Vito Latora,et al.  Entropy rate of diffusion processes on complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Stefan Bornholdt,et al.  Emergence of a small world from local interactions: modeling acquaintance networks. , 2002, Physical review letters.

[10]  Albert-László Barabási,et al.  Scale-free networks , 2008, Scholarpedia.

[11]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[13]  A-L Barabási,et al.  Structure and tie strengths in mobile communication networks , 2006, Proceedings of the National Academy of Sciences.

[14]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[15]  F. Caccioli,et al.  Critical fluctuations in spatial complex networks. , 2009, Physical review letters.

[16]  Kimmo Kaski,et al.  Circadian pattern and burstiness in mobile phone communication , 2011, 1101.0377.

[17]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[18]  Céline Robardet,et al.  Description and simulation of dynamic mobility networks , 2008, Comput. Networks.

[19]  Kun Zhao,et al.  Social Interactions Model and Adaptability of Human Behavior , 2011, Front. Physio..

[20]  A. Barabasi,et al.  Quantifying social group evolution , 2007, Nature.

[21]  Albert-László Barabási,et al.  The origin of bursts and heavy tails in human dynamics , 2005, Nature.

[22]  Ciro Cattuto,et al.  Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks , 2010, PloS one.

[23]  L. Amaral,et al.  On Universality in Human Correspondence Activity , 2009, Science.

[24]  Etienne Huens,et al.  Geographical dispersal of mobile communication networks , 2008, 0802.2178.

[25]  Daniele Quercia,et al.  The personality of popular facebook users , 2012, CSCW.

[26]  Jean-Pierre Eckmann,et al.  Entropy of dialogues creates coherent structures in e-mail traffic. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Newman,et al.  Nonequilibrium phase transition in the coevolution of networks and opinions. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  G. Bianconi Mean field solution of the Ising model on a Barabási–Albert network , 2002, cond-mat/0204455.

[29]  William T. Liu,et al.  THE STRENGTH IN WEAK TIES , 1972 .

[30]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[31]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[32]  Matteo Marsili,et al.  The rise and fall of a networked society: a formal model. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A. Barrat,et al.  Dynamical and bursty interactions in social networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[35]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[36]  Ginestra Bianconi,et al.  Entropy measures for networks: toward an information theory of complex topologies. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Albert-László Barabási,et al.  Universal features of correlated bursty behaviour , 2011, Scientific Reports.

[38]  P. Pin,et al.  Assessing the relevance of node features for network structure , 2008, Proceedings of the National Academy of Sciences.

[39]  Albert-László Barabási,et al.  Modeling bursts and heavy tails in human dynamics , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Sune Lehmann,et al.  Link communities reveal multiscale complexity in networks , 2009, Nature.

[41]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[42]  César A. Hidalgo,et al.  Scale-free networks , 2008, Scholarpedia.

[43]  G. Bianconi The entropy of randomized network ensembles , 2007, 0708.0153.

[44]  Ciro Cattuto,et al.  What's in a crowd? Analysis of face-to-face behavioral networks , 2010, Journal of theoretical biology.

[45]  Kun Zhao,et al.  Entropy of Dynamical Social Networks , 2011, PloS one.

[46]  Maxi San Miguel,et al.  Generic absorbing transition in coevolution dynamics. , 2007, Physical review letters.

[47]  Jari Saramäki,et al.  Small But Slow World: How Network Topology and Burstiness Slow Down Spreading , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  D. R. Chialvo,et al.  Unraveling the fluctuations of animal motor activity. , 2009, Chaos.

[49]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[50]  P. Holme Network reachability of real-world contact sequences. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Alain Barrat,et al.  Social network dynamics of face-to-face interactions , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[53]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[54]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[55]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[56]  Adilson E. Motter,et al.  Beyond Word Frequency: Bursts, Lulls, and Scaling in the Temporal Distributions of Words , 2009, PloS one.

[57]  Pan Hui,et al.  Pocket switched networks and human mobility in conference environments , 2005, WDTN '05.

[58]  V Latora,et al.  Small-world behavior in time-varying graphs. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.