An Iterative Method for Computing the Pseudospectral Abscissa for a Class of Nonlinear Eigenvalue Problems

We consider the following class of nonlinear eigenvalue problems: $\left(\sum_{i=1}^m A_i p_i(\lambda)\right) v= 0,$ where $A_1, \ldots,A_m$ are given $n \times n$ matrices and the functions $p_1, \ldots, p_m$ are assumed to be entire. This does not only include polynomial eigenvalue problems but also eigenvalue problems arising from systems of delay differential equations. Our aim is to compute the $\epsilon$-pseudospectral abscissa, i.e., the supremum of the real parts of the points in the $\epsilon$-pseudospectrum, which is the complex set obtained by joining all solutions of the eigenvalue problem under perturbations $\{ \delta A_i \}_{i=1}^{m}$, of norm at most $\epsilon$, of the matrices $\{ A_i \}_{i=1}^{m}$. Under mild assumptions, guaranteeing the existence of a globally rightmost point of the $\epsilon$-pseudospectrum, we prove that it is sufficient to restrict the analysis to rank-one perturbations of the form $\delta A_i = \beta_i u v^*$, where $u \in \mathbb{C}^n$ and $v \in \mathbb{C}^n$ wit...

[1]  Dirk Aeyels,et al.  Practical stability and stabilization , 2000, IEEE Trans. Autom. Control..

[2]  P. Lancaster,et al.  On the perturbation of analytic matrix functions , 1999 .

[3]  Heinrich Voss,et al.  A new justification of the Jacobi–Davidson method for large eigenproblems , 2007 .

[4]  S. Niculescu,et al.  Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach , 2007 .

[5]  R. Byers A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .

[6]  Wim Michiels,et al.  A predictor-corrector type algorithm for the pseudospectral abscissa computation of time-delay systems , 2010, Autom..

[7]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[8]  Dimitri Breda,et al.  Pseudospectral Differencing Methods for Characteristic Roots of Delay Differential Equations , 2005, SIAM J. Sci. Comput..

[9]  Wim Michiels,et al.  A Krylov Method for the Delay Eigenvalue Problem , 2010, SIAM J. Sci. Comput..

[10]  G. Samaey,et al.  DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations , 2001 .

[11]  M. Steinbuch,et al.  A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .

[12]  Wim Michiels,et al.  Pseudospectra and stability radii for analytic matrix functions with application to time-delay systems , 2006 .

[13]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[14]  Nicholas J. Higham,et al.  Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications , 2001, SIAM J. Matrix Anal. Appl..

[15]  Nicholas J. Higham,et al.  NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.

[16]  S. Boyd,et al.  A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .

[17]  Adrian S. Lewis,et al.  Optimization and Pseudospectra, with Applications to Robust Stability , 2003, SIAM J. Matrix Anal. Appl..

[18]  H. Voss An Arnoldi Method for Nonlinear Eigenvalue Problems , 2004 .

[19]  Michael L. Overton,et al.  Fast Algorithms for the Approximation of the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[20]  Wim Michiels,et al.  A linear eigenvalue algorithm for the nonlinear eigenvalue problem , 2012, Numerische Mathematik.

[21]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[22]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .

[23]  V. Mehrmann,et al.  Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .

[24]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[25]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[26]  Nicola Guglielmi,et al.  Differential Equations for Roaming Pseudospectra: Paths to Extremal Points and Boundary Tracking , 2011, SIAM J. Numer. Anal..

[27]  A. Lewis,et al.  Robust stability and a criss‐cross algorithm for pseudospectra , 2003 .