On the Complexity of Recognizing Integrality and Total Dual Integrality of the {0, 1/2}-Closure

The {0, 12}-closure of a rational polyhedron {x : Ax ≤ b} is obtained by adding all Gomory-Chvátal cuts that can be derived from the linear system Ax ≤ b using multipliers in {0, 12}. We show that deciding whether the {0, 1 2}-closure coincides with the integer hull is strongly NP-hard. A direct consequence of our proof is that, testing whether the linear description of the {0, 12}-closure derived from Ax ≤ b is totally dual integral, is strongly NP-hard.

[1]  Matteo Fischetti,et al.  {0, 1/2}-Chvátal-Gomory cuts , 1996, Math. Program..

[2]  V. Chvátal On certain polytopes associated with graphs , 1975 .

[3]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[4]  J. Edmonds,et al.  A Min-Max Relation for Submodular Functions on Graphs , 1977 .

[5]  Sebastian Pokutta,et al.  On the membership problem for the {0, 1/2}-closure , 2011, Oper. Res. Lett..

[6]  Maya Jakobine Stein,et al.  t-Perfection Is Always Strong for Claw-Free Graphs , 2010, SIAM J. Discret. Math..

[7]  Bert Gerards,et al.  The Graphs with All Subgraphs T-Perfect , 1998, SIAM J. Discret. Math..

[8]  G. Nemhauser,et al.  Integer Programming , 2020 .

[9]  Gérard Cornuéjols,et al.  On the Rational Polytopes with Chvátal Rank 1 , 2018, Math. Program..

[10]  Friedrich Eisenbrand,et al.  NOTE – On the Membership Problem for the Elementary Closure of a Polyhedron , 1999, Comb..

[11]  William R. Pulleyblank,et al.  Facet Generating Techniques , 2008, Bonn Workshop of Combinatorial Optimization.

[12]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[13]  W. Cunningham,et al.  A primal algorithm for optimum matching , 1978 .

[14]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[15]  Alexander Schrijver,et al.  Strong T-Perfection of Bad-K4-Free Graphs , 2002, SIAM J. Discret. Math..

[16]  Gérard Cornuéjols,et al.  When the Gomory-Chvátal closure coincides with the integer hull , 2018, Oper. Res. Lett..

[17]  Bert Gerards,et al.  Matrices with the edmonds—Johnson property , 1986, Comb..

[18]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[19]  M. R. Rao,et al.  Odd Minimum Cut-Sets and b-Matchings , 1982, Math. Oper. Res..

[20]  Martin Grötschel,et al.  Geometric Algorithms and Combinatorial Optimization , 1988, Algorithms and Combinatorics.