A low-power monolithic three-axis accelerometer with automatically sensor offset compensated and interface circuit

Abstract This work presents a monolithically integrated CMOS-MEMS three-axis capacitive accelerometer with an effective and practical method to compensate the sensor offset. By using correlated double sampling (CDS) and an automatic sensor offset compensated mechanism in the interface circuit, the purposes of low noise and low zero-gravity(zero-g) offset accelerometer are achieved. The zero-g offset compensated circuit calibrates the sensor offset in each axis. All of the calibrated procedure is executed automatically by a micro-control-unit (MCU). After calibration, the worst zero-g offset is reduced to ±50 mg and background calibration is no longer needed. The three-axis accelerometer was fabricated by using a 0.18-μm CMOS-MEMS process and the chip area containing the sensors and the integrated circuit is 2 × 2 mm2. It achieved a ±6 g sensing range and the noise was 350 μg/rtHz for the X- and Y-axes and Z-axes was 1.5 mg/rtHz with a total current consumption of 120 μA under 1.8 V.

[1]  Jiri Marek MEMS for automotive and consumer electronics , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[2]  Huikai Xie,et al.  A Low-Power Low-Noise Dual-Chopper Amplifier for Capacitive CMOS-MEMS Accelerometers , 2011, IEEE Sensors Journal.

[3]  Benedetto Vigna MEMS Epiphany , 2009, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems.

[4]  Huikai Xie,et al.  A Monolithic CMOS-MEMS 3-Axis Accelerometer With a Low-Noise, Low-Power Dual-Chopper Amplifier , 2008, IEEE Sensors Journal.

[5]  Bernhard E. Boser,et al.  A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics , 1999, IEEE J. Solid State Circuits.

[6]  Y. Z. Juang,et al.  A Monolithic Three-Axis Accelerometer with Wafer-Level Package by CMOS MEMS Process , 2017 .

[7]  Yan Su,et al.  27.2 A1.2μg/√Hz-resolution 0.4μg-bias-instability MEMS silicon oscillating accelerometer with CMOS readout circuit , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[8]  Mikko Saukoski,et al.  A Micropower Interface ASIC for a Capacitive 3-Axis Micro-Accelerometer , 2007, IEEE Journal of Solid-State Circuits.

[9]  R. Burt,et al.  A Micropower Chopper-Stabilized Operational Amplifier using a SC Notch Filter with Synchronous Integration inside the ContinuousTime Signal Path , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[10]  J.H. Huijsing,et al.  A Chopper Current-Feedback Instrumentation Amplifier With a 1 mHz $1/f$ Noise Corner and an AC-Coupled Ripple Reduction Loop , 2009, IEEE Journal of Solid-State Circuits.

[11]  Kofi A. A. Makinwa,et al.  A 1.8 $\mu$ W 60 nV$/\surd$ Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes , 2011, IEEE Journal of Solid-State Circuits.

[12]  J.H. Huijsing,et al.  A CMOS chopper opamp with integrated low-pass filter , 1997, Proceedings of the 23rd European Solid-State Circuits Conference.

[13]  Kari Halonen,et al.  A closed-loop SC interface for a ±1.4g accelerometer with 0.33% nonlinearity and 2µg/vHz input noise density , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[14]  G.K. Fedder,et al.  A low-noise low-offset capacitive sensing amplifier for a 50-/spl mu/g//spl radic/Hz monolithic CMOS MEMS accelerometer , 2004, IEEE Journal of Solid-State Circuits.

[15]  Vladimir P. Petkov,et al.  A fully differential charge-balanced accelerometer for Electronic Stability Control , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[16]  B.E. Boser,et al.  A fourth-order /spl Sigma//spl Delta/ interface for micromachined inertial sensors , 2004, IEEE Journal of Solid-State Circuits.

[17]  Ying-Zong Juang,et al.  Digital Offset Trimming Techniques for CMOS MEMS Accelerometers , 2014, IEEE Sensors Journal.

[18]  Ying-Zong Juang,et al.  Implementation of a monolithic capacitive accelerometer in a wafer-level 0.18 µm CMOS MEMS process , 2012 .