Air-Core Ring Fiber Guiding >400 Radially Fundamental OAM Modes Across S + C + L Bands

In this paper, we propose and design a Ge-doped air-core ring fiber, which can support a large amount of OAM modes for mode-division multiplexing (MDM) in optical fiber communications. By varying the mole fraction of GeO<sub>2</sub> and adjusting the structure parameter, including the air-core radius and the GeO<sub>2</sub>-doped ring width, we investigate the influence of different fiber parameters on the total supported OAM mode number. The hollow silica fiber with a 50-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> air core and a 1.5-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> thickness of Ge-doped ring is designed in simulation to support fiber eigenmodes up to HE<sub>112,1</sub> and EH<sub>107,1</sub>. This provides 436 OAM modes at 1550 nm while maintaining radially single mode condition. Moreover, it can support more than 400 radially fundamental OAM modes for the wavelength from 1460 nm to 1625 nm, covering entire S, C and L bands. The optical parameters of the guided OAM modes in the fiber are also numerically analyzed, including effect of material loss, optical field distribution, effective refractive index profile and chromatic dispersion, etc. The simulation results show that the higher-order OAM modes have longer <inline-formula> <tex-math notation="LaTeX">$2\pi $ </tex-math></inline-formula> and 10-ps walk-off length in the air-core ring fiber with ellipticity or bending compared with low-order modes.

[1]  M. Leppihalme,et al.  GeO2-Core/SiO2-cladding optical fibers made by MCVD process for stimulated raman applications , 1987 .

[2]  S. Ramachandran,et al.  Conservation of orbital angular momentum in air core optical fibers , 2014 .

[3]  Junichi Hamazaki,et al.  Optical-vortex laser ablation. , 2010, Optics express.

[4]  Gabriel Charlet,et al.  6-mode spatial multiplexer with low loss and high selectivity for transmission over few mode fiber , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[5]  Laird M Close,et al.  Astronomical demonstration of an optical vortex coronagraph. , 2008, Optics express.

[6]  Hongzhi Jia,et al.  Theoretical analysis of hollow ring-core optical fibre for transmitting orbital angular momentum modes , 2017 .

[7]  V. Mashinsky,et al.  Germania-based core optical fibers , 2005, Journal of Lightwave Technology.

[8]  Yongxiong Ren,et al.  Air-Core Ring Fiber With >1000 Radially Fundamental OAM Modes Across O, E, S, C, and L Bands , 2020, IEEE Access.

[9]  Yongxiong Ren,et al.  Two-Octave Supercontinuum Generation of High-Order OAM Modes in Air-Core As₂S₃ Ring Fiber , 2020, IEEE Access.

[10]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[11]  Alexander Jesacher,et al.  Three-dimensional information from two-dimensional scans: a scanning microscope with postacquisition refocusing capability , 2015 .

[12]  Volkmar Brückner,et al.  To the use of Sellmeier formula by Volkmar Brückner , 2020 .

[13]  Photonic crystal fiber for robust orbital angular momentum transmission: design and investigation , 2019 .

[14]  S. Ramachandran,et al.  Spin-orbit coupled, non-integer OAM fibers: Unlocking a new eigenbasis for transmitting 24 uncoupled modes , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[16]  Craig B. Arnold,et al.  Bessel and annular beams for materials processing , 2012 .

[17]  Tatsuhiko Watanabe,et al.  Over 300 channels uncoupled few-mode multi-core fiber for space division multiplexing , 2014, OFC 2014.

[18]  S Ramachandran,et al.  Enhanced spin orbit interaction of light in highly confining optical fibers for mode division multiplexing , 2019, Nature Communications.

[19]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[20]  T. Nguyen,et al.  Numerical analysis of circular core shaped photonic crystal fiber for orbital angular momentum with efficient transmission , 2020, Applied Physics B.

[21]  Leslie Ann Rusch,et al.  Quantifying the Coupling and Degeneracy of OAM Modes in High-Index-Contrast Ring Core Fiber , 2021, Journal of Lightwave Technology.

[22]  Andong Wang,et al.  18  km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation. , 2018, Optics letters.

[23]  Siyuan Yu,et al.  80-Channel WDM-MDM Transmission Over 50-km Ring-Core Fiber using a Compact OAM DEMUX and Modular 4×4 MIMO Equalization , 2018, 2019 Optical Fiber Communications Conference and Exhibition (OFC).

[24]  S Ramachandran,et al.  On the scalability of ring fiber designs for OAM multiplexing. , 2015, Optics express.

[25]  Ting Wang,et al.  Detecting Lateral Motion using Light’s Orbital Angular Momentum , 2015, Scientific Reports.

[26]  Guifang Li,et al.  Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing , 2012, IEEE Photonics Technology Letters.

[27]  Moshe Tur,et al.  Using a complex optical orbital-angular-momentum spectrum to measure object parameters. , 2017, Optics letters.

[28]  Mohamed-Slim Alouini,et al.  Communicating Using Spatial Mode Multiplexing: Potentials, Challenges, and Perspectives , 2018, IEEE Communications Surveys & Tutorials.

[29]  Ring-based coil structure photonic crystal fiber for transmission of Orbital Angular Momentum with large bandwidth: Outline, investigation and analysis , 2020 .

[30]  Siyuan Yu,et al.  Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes. , 2018, Optics express.

[31]  A. E. Willner,et al.  Mode Properties and Propagation Effects of Optical Orbital Angular Momentum (OAM) Modes in a Ring Fiber , 2012, IEEE Photonics Journal.

[32]  Masaki Wada,et al.  Coupled Multicore Fiber Design With Low Intercore Differential Mode Delay for High-Density Space Division Multiplexing , 2015, Journal of Lightwave Technology.

[33]  Hao Zhang,et al.  Beyond Two-Octave Coherent OAM Supercontinuum Generation in Air-Core As2S3 Ring Fiber , 2020, IEEE Access.

[34]  Zhi-Chao Luo,et al.  Photonic crystal fiber for supporting 26 orbital angular momentum modes. , 2016, Optics express.

[35]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[36]  Jian Wang,et al.  Multi-Orbital-Angular-Momentum Multi-Ring Fiber for High-Density Space-Division Multiplexing , 2013, IEEE Photonics Journal.

[37]  Gunnar Jacobsen,et al.  Chromatic dispersion compensation in coherent transmission system using digital filters. , 2010, Optics express.

[38]  Jian Wang,et al.  A Compact Trench-Assisted Multi-Orbital-Angular-Momentum Multi-Ring Fiber for Ultrahigh-Density Space-Division Multiplexing (19 Rings × 22 Modes) , 2014, Scientific Reports.

[39]  Sophie LaRochelle,et al.  Design, fabrication and validation of an OAM fiber supporting 36 states. , 2014, Optics express.

[41]  Toshio Morioka,et al.  12 mode, WDM, MIMO-free orbital angular momentum transmission. , 2018, Optics express.

[42]  T. Sakamoto,et al.  120 Spatial Channel Few-Mode Multi-Core Fibre with Relative Core Multiplicity Factor Exceeding 100 , 2018, 2018 European Conference on Optical Communication (ECOC).

[43]  Jian Wang,et al.  Supermode fiber for orbital angular momentum (OAM) transmission. , 2015, Optics express.

[44]  Md. Anowar Kabir,et al.  Design a photonic crystal fiber of guiding terahertz orbital angular momentum beams in optical communication , 2020 .

[45]  Ying Zhang,et al.  Edge-dip air core fiber for improvement of the transmission of higher-order OAM modes , 2018, Other Conferences.

[46]  F. A. Al-Zahrani,et al.  Novel design of dual guided photonic crystal fiber for large capacity transmission in high-speed optics communications with supporting good quality OAM and LP modes , 2020 .

[47]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[48]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .