Theoretical study of the stability and properties of magic numbers (m = 5, n = 2) and (m = 6, n = 3) of bimetallic bismuth-copper nanoclusters; Bim Cun

Inspired by the experimental discovery of magic numbers we present a first study using density functional theory for the structure and properties of neutral and cationic Bi6Cu3 and Bi5Cu2 clusters. Our results confirm predictions based on Wade's rules. The closed electron shells, characteristic of cationic clusters help impose enhanced stability, while also complying with Wade's rules. Charge distribution analysis, as well as electrostatic potential maps show that in almost all cases, Bi atoms donate charges to Cu atoms. According to the analysis of condensed Fukui indices, Cu atoms inside both clusters are not reactive. Contrastingly, Bi atoms are reactive and may be targeted by different types of attack. This study of the electronic properties may thus help to determine experimental strategies with the capacity to enhance the synthesis of catalysts.

[1]  Mark Wolverton,et al.  Substrate’s surface electrons disrupt molecular self-assembly , 2017 .

[2]  C. Wolverton,et al.  Creating Binary Cu–Bi Compounds via High-Pressure Synthesis: A Combined Experimental and Theoretical Study , 2017 .

[3]  A. Varas,et al.  Structural, electronic, and magnetic properties of FexCoyPdz (x + y + z ≤ 7) clusters: a density functional theory study , 2016, Journal of Nanoparticle Research.

[4]  Cheng Lu,et al.  Insights into the geometries, electronic and magnetic properties of neutral and charged palladium clusters , 2016, Scientific Reports.

[5]  Cheng Lu,et al.  Study of the Structural and Electronic Properties of Neutral and Charged Niobium-Doped Silicon Clusters: Niobium Encapsulated in Silicon Cages , 2016 .

[6]  A. Varas,et al.  Structural, electronic, and magnetic properties of FexCoyNiz (x+y+z=13) clusters: A density-functional-theory study , 2015 .

[7]  Cheng Lu,et al.  Ab Initio Search for Global Minimum Structures of Pure and Boron Doped Silver Clusters. , 2015, The journal of physical chemistry. A.

[8]  Cheng Lu,et al.  Geometries, stabilities and fragmental channels of neutral and charged sulfur clusters: Sn(Q) (n = 3-20, Q = 0, ±1). , 2015, Physical chemistry chemical physics : PCCP.

[9]  A. Miralrio,et al.  Electronic structure and stability of binary and ternary aluminum‐bismuth‐nitrogen nanoclusters , 2014 .

[10]  L. E. Sansores,et al.  Theoretical study of neutral bismuth-copper, bismuth-silver and bismuth-gold clusters , 2013 .

[11]  G. Maroulis,et al.  Electric quadrupole and hexadecapole moment, dipole polarizability and hyperpolarizability of the copper tetramer (Cu4) from pseudopotential calculations and a comparison with all-electron ab initio results , 2012 .

[12]  F. Weigend,et al.  Structures of small bismuth cluster cations. , 2012, The Journal of chemical physics.

[13]  Xiang-dong Yang,et al.  Structural, electronic, and magnetic properties of boron cluster anions doped with aluminum: BnAl− (2 ≤ n ≤ 9) , 2012 .

[14]  Jianji Wang,et al.  Density Functional Study of Cationic and Anionic AgmCun (m +n ≤ 5) Clusters , 2012 .

[15]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[16]  Wei Chen,et al.  Copper nanoclusters: Synthesis, characterization and properties , 2012 .

[17]  A. Kutsenko,et al.  Laser-microwave spectroscopy of Cu I atoms in S, P, D, F and G Rydberg states , 2009 .

[18]  G. Maroulis,et al.  Electric Polarizability and Hyperpolarizability of the Copper Tetramer (Cu 4 ) from Ab Initio and Density Functional Theory Calculations , 2009 .

[19]  Siddhartha P Duttagupta,et al.  Strain specificity in antimicrobial activity of silver and copper nanoparticles. , 2008, Acta biomaterialia.

[20]  A. Kuang,et al.  Density-functional study of small neutral and cationic bismuth clusters Bi(n) and Bi(n) (+)(n=2-24). , 2008, The Journal of chemical physics.

[21]  T. Miyanaga,et al.  Phase transitions of bismuth clusters , 2007 .

[22]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[23]  D. M. Knowles,et al.  Electron microscopy of bismuth building blocks for self-assembled nanowires , 2006 .

[24]  J. S. Thayer Relativistic Effects and the Chemistry of the Heaviest Main-Group Elements. , 2005 .

[25]  J. Havel,et al.  Laser ablation generation of arsenic and arsenic sulfide clusters , 2005 .

[26]  J. Soler,et al.  Trends in the structure and bonding of noble metal clusters , 2004 .

[27]  P. Calaminici,et al.  Structure and stability of small copper clusters , 2002 .

[28]  R. Bilodeau,et al.  Electron affinity of Bi using infrared laser photodetachment threshold spectroscopy , 2001 .

[29]  Michael Dolg,et al.  Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO , 2000 .

[30]  R. Bilodeau,et al.  Infrared laser photodetachment of transition metal negative ions: studies on , , and , 1998 .

[31]  A. Gedanken,et al.  Synthesis, Characterization, and Properties of Metallic Copper Nanoparticles , 1998 .

[32]  D. Salahub,et al.  A density functional study of small copper clusters: Cun (n⩽5) , 1996 .

[33]  Francisco Méndez,et al.  Chemical Reactivity of Enolate Ions: The Local Hard and Soft Acids and Bases Principle Viewpoint , 1994 .

[34]  H. Schaefer,et al.  Dodecahedral and smaller arsenic clusters: Asn, n=2, 4, 12, 20 , 1994 .

[35]  Kumar Electronic and atomic stuctures of Sb4 and Sb8 clusters. , 1993, Physical review. B, Condensed matter.

[36]  D. Deng,et al.  Copper/antimony and copper/bismuth alloy clusters : magic numbers and electronic structure , 1993 .

[37]  M. Knickelbein Electronic shell structure in the ionization potentials of copper clusters , 1992 .

[38]  Mitch,et al.  Phase transition in ultrathin Bi films. , 1991, Physical review letters.

[39]  D. S. Ginter,et al.  Absorption spectrum of Bi I in the 2022- to 1307-A region , 1989 .

[40]  R. Smalley,et al.  Ultraviolet photoelectron spectroscopy of copper clusters , 1988 .

[41]  Robert G. Parr,et al.  Density functional approach to the frontier-electron theory of chemical reactivity , 1984 .

[42]  Cheng Lu,et al.  Systematic theoretical investigation of geometries, stabilities and magnetic properties of iron oxide clusters (FeO)nμ (n = 1–8, μ = 0, ±1): insights and perspectives , 2015 .

[43]  A. Solov'yov,et al.  Atomic cluster collisions , 2013 .

[44]  A. Köster,et al.  Growth pattern and bonding of copper clusters , 2002 .

[45]  M. Moskovits,et al.  Optical spectroscopy of copper clusters: Atom to bulk , 1999 .