A maxwellian lower bound for solutions to the Boltzmann equation

We prove that the solution of the spatially homogeneous Boltzmann equation is bounded pointwise from below by a Maxwellian, i.e. a function of the formc1 exp(-c2v2). This holds for any initial data with bounded mass, energy and entropy, and for any positive timet≧t0. The constantsc1, andc2, depend on the mass, energy and entropy of the initial data, and ont0>0 only.A similar result is obtained for the Kac caricature of the Boltzmann equation, where the proof is easier.

[1]  T. Carleman,et al.  Sur la théorie de l'équation intégrodifférentielle de Boltzmann , 1933 .

[2]  Eric A. Carlen,et al.  Entropy production estimates for Boltzmann equations with physically realistic collision kernels , 1994 .

[3]  A. Pulvirenti,et al.  Lower bounds for the solutions to the Kac and the boltzmann equation , 1996 .

[4]  Raphael Aronson,et al.  Theory and application of the Boltzmann equation , 1976 .

[5]  N. Bellomo,et al.  ON THE CAUCHY PROBLEM FOR THE BOLTZMANN EQUATION , 1995 .

[6]  P. Lions,et al.  On the Cauchy problem for Boltzmann equations: global existence and weak stability , 1989 .

[7]  H. McKean Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas , 1966 .

[8]  Laurent Desvillettes,et al.  About the regularizing properties of the non-cut-off Kac equation , 1995 .

[9]  L. Desvillettes Entropy dissipation rate and convergence in kinetic equations , 1989 .

[10]  B. Wennberg On an entropy dissipation inequality for the Boltzmann equation , 1992 .

[11]  T. Carleman,et al.  Problèmes mathématiques dans la théorie cinétique des gaz , 1957 .

[12]  On convergence to equilibrium for Kac’s caricature of a Maxwell gas , 1994 .

[13]  C. Saavedra,et al.  Quantum flows associated to master equations in quantum optics , 1994 .

[14]  J. Gillis,et al.  Probability and Related Topics in Physical Sciences , 1960 .

[15]  L. Arkeryd L∞ estimates for the space-homogeneous Boltzmann equation , 1983 .