Extension of Fill's perfect rejection sampling algorithm to general chains (Extended abstract)

We provide an extension of the perfect sampling algorithm of Fill (1998) to general chains, and describe how use of bounding processes can ease computational burden. Along the way, we unearth a simple connection between the Coupling From The Past (CFTP) algorithm originated by Propp and Wilson (1996) and our extension of Fill's algorithm.

[1]  Jesper Møller,et al.  Perfect Metropolis-Hastings simulation of locally stable point processes , 1999 .

[2]  Mark Huber,et al.  Exact sampling and approximate counting techniques , 1998, STOC '98.

[3]  J. A. Fill An interruptible algorithm for perfect sampling via Markov chains , 1998 .

[4]  Christian P. Robert,et al.  On perfect simulation for some mixtures of distributions , 1999, Stat. Comput..

[5]  P. Hanlon,et al.  A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements , 1999 .

[6]  David Bruce Wilson,et al.  How to Get a Perfectly Random Sample from a Generic Markov Chain and Generate a Random Spanning Tree of a Directed Graph , 1998, J. Algorithms.

[7]  T. Kamae,et al.  Stochastic Inequalities on Partially Ordered Spaces , 1977 .

[8]  Jesper Møller,et al.  Extensions of Fill's algorithm for perfect simulation , 1999 .

[9]  R. Tweedie,et al.  Perfect simulation and backward coupling , 1998 .

[10]  G. Roberts,et al.  An Approach to Diagnosing Total Variation Convergence of MCMC Algorithms , 1997 .

[11]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[12]  P. Green,et al.  Exact Sampling from a Continuous State Space , 1998 .

[13]  Mark Huber,et al.  Efficient exact sampling from the Ising model using Swendsen-Wang , 1999, SODA '99.

[14]  James Allen Fill,et al.  On the Markov Chain for the Move-to-Root Rule for Binary Search Trees , 1995 .

[15]  Wilfrid S. Kendall,et al.  Perfect simulation in stochastic geometry , 1999, Pattern Recognit..

[16]  Persi Diaconis,et al.  Iterated Random Functions , 1999, SIAM Rev..

[17]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[18]  E. Thönnes Perfect simulation of some point processes for the impatient user , 1999, Advances in Applied Probability.

[19]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[20]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[21]  David B. Wilson How to couple from the past using a read-once source of randomness , 2000 .

[22]  J. Propp,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996 .

[23]  P. Diaconis,et al.  Strong Stationary Times Via a New Form of Duality , 1990 .

[24]  David Wilson,et al.  Coupling from the past: A user's guide , 1997, Microsurveys in Discrete Probability.

[25]  David Bruce Wilson,et al.  Annotated bibliography of perfectly random sampling with Markov chains , 1997, Microsurveys in Discrete Probability.

[26]  Y. Kifer Ergodic theory of random transformations , 1986 .

[27]  Wilfrid S. Kendall,et al.  Perfect Simulation for the Area-Interaction Point Process , 1998 .

[28]  James Allen Fill,et al.  Extension of Fill's perfect rejection sampling algorithm to general chains , 2000, Random Struct. Algorithms.

[29]  P. Diaconis,et al.  Random walks and hyperplane arrangements , 1998 .

[30]  O. Haggstrom,et al.  On Exact Simulation of Markov Random Fields Using Coupling from the Past , 1999 .

[31]  James Allen Fill,et al.  Rates of Convergence for the Move-to-Root Markov Chain for Binary Search Trees , 1995 .

[32]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[33]  Duncan J. Murdoch,et al.  Efficient use of exact samples , 2000, Stat. Comput..

[34]  J. A. Fill,et al.  Stochastic monotonicity and realizable monotonicity , 2000, math/0005267.

[35]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[36]  J. A. Fill The Move-to-Front Rule: A Case Study for two Perfect Sampling Algorithms , 1998, Probability in the Engineering and Informational Sciences.

[37]  J. Møller Perfect simulation of conditionally specified models , 1999 .

[38]  S. Meyn,et al.  Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .