Integral Quadratic Separators for performance analysis

Well-posedness of feedback connected systems is considered in topological separation framework. The case when a known linear descriptor transformation is connected to an uncertain operator is considered. Well-posedness is demonstrated to hold provided an Integral Quadratic Separator satisfying both some Linear Matrix Inequalities and an Integral Quadratic Constraint. The main result is applied to three input-output performance criteria.

[1]  S. Hara,et al.  Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations , 1998, IEEE Trans. Autom. Control..

[2]  Michael G. Safonov,et al.  Stability and Robustness of Multivariable Feedback Systems , 1980 .

[3]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[4]  Dimitri Peaucelle,et al.  Integral Quadratic Separation Applied to Polytopic Systems , 2009 .

[5]  D. Henrion,et al.  QUADRATIC SEPARATION FOR FEEDBACK CONNECTION OF AN UNCERTAIN MATRIX AND AN IMPLICIT LINEAR TRANSFORMATION , 2005 .

[6]  Sophie Tarbouriech,et al.  Advanced strategies in control systems with input and output constraints , 2007 .

[7]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[8]  Minyue Fu,et al.  Integral quadratic constraint approach vs. multiplier approach , 2005, Autom..

[9]  Dimitri Peaucelle,et al.  Quadratic separation for uncertain descriptor system analysis, strict LMI conditions , 2007, 2007 46th IEEE Conference on Decision and Control.

[10]  Ulf Jönsson,et al.  Optimization of integral quadratic constraints , 1999 .

[11]  Guido Herrmann,et al.  Advanced Strategies in Control Systems with Input and Output Constraints , 2006 .

[12]  Tetsuya Iwasaki,et al.  LPV system analysis via quadratic separator for uncertain implicit systems , 2001, IEEE Trans. Autom. Control..

[13]  Laurent El Ghaoui,et al.  Advances in linear matrix inequality methods in control: advances in design and control , 1999 .

[14]  Alexandre Megretski,et al.  IQC characterizations of signal classes , 1999, 1999 European Control Conference (ECC).

[15]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .