Rational invariants of a group action. Construction and rewriting

Geometric constructions applied to a rational action of an algebraic group lead to a new algorithm for computing rational invariants. A finite generating set of invariants appears as the coefficients of a reduced Grobner basis. The algorithm comes in two variants. In the first construction the ideal of the graph of the action is considered. In the second one the ideal of a cross-section is added to the ideal of the graph. Zero-dimensionality of the resulting ideal brings a computational advantage. In both cases, reduction with respect to the computed Grobner basis allows us to express any rational invariant in terms of the generators.

[1]  Marc Giusti,et al.  On the efficiency of effective Nullstellensätze , 2005, computational complexity.

[2]  M. Rosenlicht,et al.  Some Basic Theorems on Algebraic Groups , 1956 .

[3]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[4]  Lorenzo Robbiano,et al.  Computational Algebraic Geometry and Commutative Algebra : Cortona 1991 , 1993 .

[5]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[6]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[7]  Harm Derksen,et al.  Computational Invariant Theory , 2002 .

[8]  Teresa Krick,et al.  Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.

[9]  Valeri V.Dolotin On Invariant Theory , 1995, alg-geom/9512011.

[10]  P. Olver,et al.  Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .

[11]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .

[12]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[13]  Jörn Müller-Quade,et al.  Basic Algorithms for Rational Function Fields , 1999, J. Symb. Comput..

[14]  Irina A. Kogan,et al.  Smooth and Algebraic Invariants of a Group Action: Local and Global Constructions , 2007, Found. Comput. Math..

[15]  Thomas Beth,et al.  Calculating Generators for Invariant Fields of Linear Algebraic Groups , 1999, AAECC.

[16]  bitnetJoos Heintz,et al.  La D Etermination Des Points Isol Es Et De La Dimension D'une Vari Et E Alg Ebrique Peut Se Faire En Temps Polynomial , 1991 .

[17]  Harm Derksen,et al.  Computation of Invariants for Reductive Groups , 1999 .

[18]  I. Shafarevich Basic algebraic geometry , 1974 .