Rational invariants of a group action. Construction and rewriting
暂无分享,去创建一个
[1] Marc Giusti,et al. On the efficiency of effective Nullstellensätze , 2005, computational complexity.
[2] M. Rosenlicht,et al. Some Basic Theorems on Algebraic Groups , 1956 .
[3] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[4] Lorenzo Robbiano,et al. Computational Algebraic Geometry and Commutative Algebra : Cortona 1991 , 1993 .
[5] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[6] Heinz Kredel,et al. Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .
[7] Harm Derksen,et al. Computational Invariant Theory , 2002 .
[8] Teresa Krick,et al. Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.
[9] Valeri V.Dolotin. On Invariant Theory , 1995, alg-geom/9512011.
[10] P. Olver,et al. Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .
[11] G. Greuel,et al. A Singular Introduction to Commutative Algebra , 2002 .
[12] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[13] Jörn Müller-Quade,et al. Basic Algorithms for Rational Function Fields , 1999, J. Symb. Comput..
[14] Irina A. Kogan,et al. Smooth and Algebraic Invariants of a Group Action: Local and Global Constructions , 2007, Found. Comput. Math..
[15] Thomas Beth,et al. Calculating Generators for Invariant Fields of Linear Algebraic Groups , 1999, AAECC.
[16] bitnetJoos Heintz,et al. La D Etermination Des Points Isol Es Et De La Dimension D'une Vari Et E Alg Ebrique Peut Se Faire En Temps Polynomial , 1991 .
[17] Harm Derksen,et al. Computation of Invariants for Reductive Groups , 1999 .
[18] I. Shafarevich. Basic algebraic geometry , 1974 .