Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry

Abstract In this paper, the thermal runaway features of a 25 Ah large format prismatic lithium ion battery with Li(NixCoyMnz)O2 (NCM) cathode are evaluated using the extended volume-accelerating rate calorimetry (EV-ARC). 4 thermocouples are set at different positions of the battery. The temperature inside the battery is 870 °C or so, much higher than that outside the battery. The temperature difference is calculated from the recorded data. The temperature difference within the battery stays lower than 1 °C for 97% of the test period, while it rises to its highest, approximately 520 °C, when thermal runaway happens. The voltage of the battery is also measured during the test. It takes 15–40 s from the sharp drop of voltage to the instantaneous rise of temperature. Such a time interval is beneficial for early warning of the thermal runaway. Using a pulse charge/discharge profile, the internal resistance is derived from the quotient of the pulse voltage and the current during the ARC test. The internal resistance of the battery increases slowly from 20 mΩ to 60 mΩ before thermal runaway, while it rises to 370 mΩ when thermal runaway happens indicating the loss of the integrity of the separator or the battery swell.

[1]  Ralph E. White,et al.  Calendar life performance of pouch lithium-ion cells , 2005 .

[2]  J. Kerr,et al.  Chemical reactivity of PF{sub 5} and LiPF{sub 6} in ethylene carbonate/dimethyl carbonate solutions , 2001 .

[3]  Hiroaki Ishikawa,et al.  Study of thermal deterioration of lithium-ion secondary cell using an accelerated rate calorimeter (ARC) and AC impedance method , 2012 .

[4]  C. Shu,et al.  Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2 , 2012, Journal of Thermal Analysis and Calorimetry.

[5]  J. Dahn,et al.  Reactivity of Li y [ Ni x Co1 − 2x Mn x ] O 2 ( x = 0.1 , 0.2, 0.35, 0.45, and 0.5; y = 0.3 , 0.5) with Nonaqueous Solvents and Electrolytes Studied by ARC , 2005 .

[6]  Myung-Hyun Ryou,et al.  Effects of lithium salts on thermal stabilities of lithium alkyl carbonates in SEI layer , 2012 .

[7]  K. Smith,et al.  Three dimensional thermal-, electrical-, and electrochemical-coupled model for cylindrical wound large format lithium-ion batteries , 2013 .

[8]  K. Amine,et al.  High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells , 2005 .

[9]  J. Tarascon,et al.  Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li‐Ion Batteries , 1998 .

[10]  D. H. Doughty,et al.  Vehicle Battery Safety Roadmap Guidance , 2012 .

[11]  Hidenori Haruna,et al.  Large-format lithium-ion batteries for electric power storage , 2010 .

[12]  Xiangming He,et al.  Thermal analysis of sulfurization of polyacrylonitrile with elemental sulfur , 2008 .

[13]  J. Yamaki,et al.  Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells , 2002 .

[14]  Chi-Min Shu,et al.  Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology , 2012 .

[15]  J. Dahn,et al.  Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental , 1999 .

[16]  J. Rishpon,et al.  Electrochemical Biosensing for Direct Biopsy Slices Screening for Colorectal Cancer Detection , 2011 .

[17]  Yan Yu,et al.  A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions , 2012 .

[18]  Ahmad Pesaran,et al.  Fail-safe design for large capacity lithium-ion battery systems , 2012 .

[19]  Ilias Belharouak,et al.  Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications , 2004 .

[20]  Ralph E. White,et al.  Calendar life study of Li-ion pouch cells: Part 2: Simulation , 2008 .

[21]  Chi-Yuan Lee,et al.  In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors , 2011, Sensors.

[22]  Gi‐Heon Kim,et al.  A three-dimensional thermal abuse model for lithium-ion cells , 2007 .

[23]  S. Moon,et al.  A study on carbon-coated LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries , 2008 .

[24]  E. Roth Thermal Response and Flammability of Li-Ion Cells for HEV and PHEV Applications , 2008 .

[25]  Ralph E. White,et al.  Calendar life study of Li-ion pouch cells , 2007 .

[26]  Yi Ding,et al.  Online Parameterization of Lumped Thermal Dynamics in Cylindrical Lithium Ion Batteries for Core Temperature Estimation and Health Monitoring , 2013, IEEE Transactions on Control Systems Technology.

[27]  Qingsong Wang,et al.  Thermal stability of LiPF6/EC + DEC electrolyte with charged electrodes for lithium ion batteries , 2005 .

[28]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[29]  Chi-Min Shu,et al.  Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. , 2011, Journal of hazardous materials.

[30]  Ilias Belharouak,et al.  Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications , 2003 .

[31]  Mao-Sung Wu,et al.  Numerical simulation for the discharge behaviors of batteries in series and/or parallel-connected battery pack , 2006 .

[32]  Christopher J. Orendorff,et al.  The Role of Separators in Lithium-Ion Cell Safety , 2012 .

[33]  E. Roth,et al.  Thermal abuse performance of high-power 18650 Li-ion cells , 2004 .

[34]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[35]  Ketack Kim,et al.  Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries , 2007 .

[36]  Nigel P. Brandon,et al.  Module design and fault diagnosis in electric vehicle batteries , 2012 .

[37]  M. Broussely,et al.  On safety of lithium-ion cells , 1999 .

[38]  J. Selman,et al.  Cooperative research on safety fundamentals of lithium batteries , 2001 .

[39]  D. D. MacNeil,et al.  Comparison of the Reactivity of Various Carbon Electrode Materials with Electrolyte at Elevated Temperature , 1999 .

[40]  Yo Kobayashi,et al.  Cycle life estimation of Lithium secondary battery by extrapolation method and accelerated aging test , 2001 .

[41]  Hajime Arai,et al.  Thermal Reactions Between Delithiated Lithium Nickelate and Electrolyte Solutions , 2002 .

[42]  Dinh Vinh Do,et al.  Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery , 2010 .

[43]  Haiyan Wang,et al.  Oxygen Evolution in Overcharged LixNi1/3Co1/3Mn1/3O2 Electrode and Its Thermal Analysis Kinetics , 2011 .

[44]  S. Wang,et al.  炭酸エチレン/炭酸ジメチル溶液中でのPF 5 及びLiPF 6 の化学反応性 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2001 .

[45]  R. Spotnitz,et al.  Abuse behavior of high-power, lithium-ion cells , 2003 .

[46]  J. Dahn,et al.  Test of Reaction Kinetics Using Both Differential Scanning and Accelerating Rate Calorimetries As Applied to the Reaction of LixCoO2 in Non-aqueous Electrolyte , 2001 .

[47]  Yasunori Ozawa,et al.  A kinetics study of self-discharge of spinel electrodes in Li/LixMn2O4 cells , 2006 .

[48]  C. Shu,et al.  Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter , 2013, Journal of Thermal Analysis and Calorimetry.

[49]  M. Dubarry,et al.  Identifying battery aging mechanisms in large format Li ion cells , 2011 .

[50]  Bin Wu,et al.  Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples , 2013 .

[51]  Can-Yong Jhu,et al.  Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries , 2011 .

[52]  Jianqiu Li,et al.  LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation , 2013 .

[53]  H. Maleki,et al.  Thermal Stability Studies of Li‐Ion Cells and Components , 1999 .

[54]  R. Yazami,et al.  Mechanism of self-discharge in graphite–lithium anode , 2002 .

[55]  Junwei Jiang,et al.  The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte , 2007 .

[56]  Diego Lisbona,et al.  A review of hazards associated with primary lithium and lithium-ion batteries , 2011 .

[57]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[58]  Z. Zhang,et al.  Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells , 1998 .