Pharmacogenomics of GPCR Drug Targets

[1]  Adam J. Pawson,et al.  IUPHAR/BPS guide to pharmacology , 2020 .

[2]  Alexander S. Hauser,et al.  GPCRdb in 2018: adding GPCR structure models and ligands , 2017, Nucleic Acids Res..

[3]  M. Hutz,et al.  Association between DRD2 and DRD3 gene polymorphisms and gastrointestinal symptoms induced by levodopa therapy in Parkinson’s disease , 2016, The Pharmacogenomics Journal.

[4]  David E. Gloriam,et al.  Trends in GPCR drug discovery: new agents, targets and indications , 2017, Nature Reviews Drug Discovery.

[5]  R. Russell,et al.  Genetic variants affecting equivalent protein family positions reflect human diversity , 2017, Scientific Reports.

[6]  M. Congreve,et al.  Applying Structure-Based Drug Design Approaches to Allosteric Modulators of GPCRs. , 2017, Trends in pharmacological sciences.

[7]  R. Stevens,et al.  How Ligands Illuminate GPCR Molecular Pharmacology , 2017, Cell.

[8]  T. S. Kobilka,et al.  Cryo-EM structure of the activated GLP-1 receptor in complex with G protein , 2017, Nature.

[9]  M. Madan Babu,et al.  Selectivity determinants of GPCR–G-protein binding , 2017, Nature.

[10]  Arthur Christopoulos,et al.  Phase-plate cryo-EM structure of a class B GPCR-G protein complex , 2017, Nature.

[11]  O. Lichtarge,et al.  Predicting phenotype from genotype: Improving accuracy through more robust experimental and computational modeling , 2017, Human mutation.

[12]  Alicia P. Higueruelo,et al.  Arpeggio: A Web Server for Calculating and Visualising Interatomic Interactions in Protein Structures , 2017, Journal of molecular biology.

[13]  Weston B. Struwe,et al.  The role of interfacial lipids in stabilizing membrane protein oligomers , 2017, Nature.

[14]  Gautier Koscielny,et al.  Open Targets: a platform for therapeutic target identification and validation , 2016, Nucleic Acids Res..

[15]  Raphael A. Bernier,et al.  denovo-db: a compendium of human de novo variants , 2016, Nucleic Acids Res..

[16]  L. Milani,et al.  Pharmacogenomic Biomarkers for Improved Drug Therapy—Recent Progress and Future Developments , 2017, The AAPS Journal.

[17]  Tudor I. Oprea,et al.  A comprehensive map of molecular drug targets , 2016, Nature Reviews Drug Discovery.

[18]  M. Bouvier,et al.  A Pluridimensional View of Biased Agonism , 2016, Molecular Pharmacology.

[19]  R. Böckmann,et al.  Membrane-Mediated Oligomerization of G Protein Coupled Receptors and Its Implications for GPCR Function , 2016, Front. Physiol..

[20]  David E. Gloriam,et al.  Integrating structural and mutagenesis data to elucidate GPCR ligand binding. , 2016, Current opinion in pharmacology.

[21]  A. J. Venkatakrishnan,et al.  Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region , 2016, Nature.

[22]  Monkol Lek,et al.  Patterns of genic intolerance of rare copy number variation in 59,898 human exomes , 2016, Nature Genetics.

[23]  P Kolb,et al.  GPCRdb: the G protein‐coupled receptor database – an introduction , 2016, British journal of pharmacology.

[24]  S. Sunyaev,et al.  Genes with monoallelic expression contribute disproportionately to genetic diversity in humans , 2016, Nature Genetics.

[25]  Hsien-Da Huang,et al.  dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins , 2015, Nucleic Acids Res..

[26]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[27]  Joanna L. Sharman,et al.  The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands , 2015, Nucleic Acids Res..

[28]  K. Martemyanov,et al.  Distinct profiles of functional discrimination among G proteins determine the actions of G protein–coupled receptors , 2015, Science Signaling.

[29]  William E. Evans,et al.  Pharmacogenomics in the clinic , 2015, Nature.

[30]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[31]  A. J. Venkatakrishnan,et al.  Universal allosteric mechanism for Gα activation by GPCRs , 2015, Nature.

[32]  T. Andrews,et al.  Comparison of predicted and actual consequences of missense mutations , 2015, Proceedings of the National Academy of Sciences.

[33]  Pietro Liò,et al.  The BioMart community portal: an innovative alternative to large, centralized data repositories , 2015, Nucleic Acids Res..

[34]  N. Sauvonnet,et al.  Endophilin marks and controls a clathrin-independent endocytic pathway , 2014, Nature.

[35]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[36]  Garth J. Williams,et al.  Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser , 2014, Nature.

[37]  Chris de Graaf,et al.  Generic GPCR residue numbers - aligning topology maps while minding the gaps. , 2015, Trends in pharmacological sciences.

[38]  N. Lambert,et al.  Monitoring G Protein Activation in Cells with BRET. , 2015, Methods in molecular biology.

[39]  Table of Pharmacogenomic Biomarkers in Drug Labeling , 2015 .

[40]  Tilman Flock,et al.  Structured and disordered facets of the GPCR fold. , 2014, Current opinion in structural biology.

[41]  Vadim Cherezov,et al.  Allosteric sodium in class A GPCR signaling. , 2014, Trends in biochemical sciences.

[42]  David A. Knowles,et al.  Allelic Expression of Deleterious Protein-Coding Variants across Human Tissues , 2014, PLoS genetics.

[43]  Christopher J. Oldfield,et al.  Classification of Intrinsically Disordered Regions and Proteins , 2014, Chemical reviews.

[44]  N. Grishin,et al.  The WAVE Regulatory Complex Links Diverse Receptors to the Actin Cytoskeleton , 2014, Cell.

[45]  M. Rask-Andersen,et al.  The druggable genome: Evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. , 2014, Annual review of pharmacology and toxicology.

[46]  David S. Wishart,et al.  DrugBank 4.0: shedding new light on drug metabolism , 2013, Nucleic Acids Res..

[47]  Brinda K Rana,et al.  Pharmacogenetics of the G protein-coupled receptors. , 2014, Methods in molecular biology.

[48]  Janet Sultana,et al.  Clinical and economic burden of adverse drug reactions , 2013, Journal of pharmacology & pharmacotherapeutics.

[49]  R. Stevens,et al.  Structural Features for Functional Selectivity at Serotonin Receptors , 2013, Science.

[50]  M. Babu,et al.  Molecular signatures of G-protein-coupled receptors , 2013, Nature.

[51]  I. Adzhubei,et al.  Predicting Functional Effect of Human Missense Mutations Using PolyPhen‐2 , 2013, Current protocols in human genetics.

[52]  Manolis Kellis,et al.  Interpreting non-coding variation in complex disease genetics , 2012, Nature Biotechnology.

[53]  Edward W Boyer,et al.  Management of opioid analgesic overdose. , 2012, The New England journal of medicine.

[54]  B. Trzaskowski,et al.  Action of Molecular Switches in GPCRs - Theoretical and Experimental Studies , 2012, Current medicinal chemistry.

[55]  E. Dermitzakis,et al.  Epistatic selection between coding and regulatory variation in human evolution and disease. , 2011, American journal of human genetics.

[56]  G. Restagno,et al.  FSH-receptor Ala307Thr polymorphism is associated to polycystic ovary syndrome and to a higher responsiveness to exogenous FSH in Italian women , 2011, Journal of Assisted Reproduction and Genetics.

[57]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[58]  Magnus Ingelman-Sundberg,et al.  Pharmacogenomic biomarkers: new tools in current and future drug therapy. , 2011, Trends in pharmacological sciences.

[59]  Bryan L Roth,et al.  Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. , 2011, Annual review of pharmacology and toxicology.

[60]  Ayelet Cooper,et al.  Nonenzymatic Rapid Control of GIRK Channel Function by a G Protein-Coupled Receptor Kinase , 2010, Cell.

[61]  G. Keating,et al.  Spotlight on Buprenorphine/Naloxone in the Treatment of Opioid Dependence† , 2009, CNS drugs.

[62]  N. Lambert,et al.  The c-terminus of GRK3 indicates rapid dissociation of G protein heterotrimers. , 2009, Cellular signalling.

[63]  Julie A. Johnson,et al.  Ethnic differences in cardiovascular drug response: potential contribution of pharmacogenetics. , 2008, Circulation.

[64]  R. Krauss,et al.  When good drugs go bad , 2007, Nature.

[65]  L. Lazzeroni,et al.  A polymorphism within a conserved β1-adrenergic receptor motif alters cardiac function and β-blocker response in human heart failure , 2006 .

[66]  C. Seva,et al.  Cholecystokinin and gastrin receptors. , 2006, Physiological reviews.

[67]  L. Lazzeroni,et al.  A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[68]  G. Dorn,et al.  β1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure , 2003, Nature Medicine.

[69]  Steven Henikoff,et al.  SIFT: predicting amino acid changes that affect protein function , 2003, Nucleic Acids Res..

[70]  Howard L McLeod,et al.  Pharmacogenomics--drug disposition, drug targets, and side effects. , 2003, The New England journal of medicine.

[71]  D. Roden,et al.  The genetic basis of variability in drug responses , 2002, Nature Reviews Drug Discovery.