Enhancement of Low Fidelity Fluid Simulations using Machine Learning
暂无分享,去创建一个
Eric M. Wolf | Philip S. Beran | Christopher R. Schrock | Kazuko Fuchi | Nathan A. Wukie | David Makhija | Eric M. Wolf | P. Beran | K. Fuchi | D. Makhija
[1] George E. Karniadakis,et al. Hidden physics models: Machine learning of nonlinear partial differential equations , 2017, J. Comput. Phys..
[2] Philip S. Beran,et al. Spiral: A General Framework For Parameter Sensitivity Analysis , 2017 .
[3] Steven L. Brunton,et al. Data-driven discovery of partial differential equations , 2016, Science Advances.
[4] Julia Ling,et al. Machine learning strategies for systems with invariance properties , 2016, J. Comput. Phys..
[5] Philip S. Beran,et al. Design-Oriented Multifidelity Fluid Simulation Using Machine Learned Fidelity Mapping , 2019 .
[6] J. Templeton,et al. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance , 2016, Journal of Fluid Mechanics.
[7] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..