Active SWIR laboratory testing methodology
暂无分享,去创建一个
Active Short Wave InfraRed (SWIR) imaging presents unique challenges to laboratory testing. It is always important to have laboratory testing that will directly relate to field performance. This paper will present the modeling and corresponding laboratory testing that was developed for these types of systems. The paper will present the modeling that was used to derive the lab metric used for verification testing of the system and provide details into the design of the lab equipment that was necessary to ensure accurate lab testing. The Noise Limited Resolution (NLR) test, first developed for low light imaging systems in the 1960s, serves as the basic lab metric for the evaluation of the active SWIR system. This test serves well for a quick test (go-no go) and is used to evaluate this system during production testing. The test derivation will be described and shown how it relates to the modeling results. The test equipment developed by Santa Barbara InfraRed (SBIR) for this application allows for accurate uniform radiance levels from an integrating sphere for both 1.06um and 1.57um imaging applications. The source has the ability to directly mimic any laser system and can provide pulsed laser source radiation from 20 nanoseconds to 500 nanoseconds resulting in levels from 0.4 to 85 nJ/cm2/sr, peak radiance levels. The light source can be triggered to replicate a laser return at any range from 100m to 100,000m. Additionally, the source provides the ability to output Mid Wave IR (MWIR) illumination through the use of a small extended area IR source in the integrating sphere. This is useful for boresighting the active SWIR sensor with other sensors such as Forward Looking IR (FLIR).