Secure Distributed Data Aggregation

We present a survey of the various families of approaches to secure aggregation in distributed networks such as sensor networks. In our survey, we focus on the important algorithmic features of each approach, and provide an overview of a family of secure aggregation protocols which use resilient distributed estimation to retrieve an approximate query result that is guaranteed to be resistant against malicious tampering; we then cover a second family, the commitment-based techniques, in which the query result is exact but the chances of detecting malicious computation tampering is probabilistic. Finally, we describe a hash-tree based approach that can both give an exact query result and is fully resistant against malicious computation tampering.

[1]  B SrivastavaMani,et al.  Reputation-based framework for high integrity sensor networks , 2008 .

[2]  Xue Liu,et al.  PDA: Privacy-Preserving Data Aggregation in Wireless Sensor Networks , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[3]  Lingxuan Hu,et al.  Secure aggregation for wireless networks , 2003, 2003 Symposium on Applications and the Internet Workshops, 2003. Proceedings..

[4]  Adrian Perrig,et al.  Efficient security primitives derived from a secure aggregation algorithm , 2008, CCS.

[5]  Donggang Liu,et al.  Multilevel μTESLA: Broadcast authentication for distributed sensor networks , 2004, TECS.

[6]  Bo Sheng,et al.  Outlier detection in sensor networks , 2007, MobiHoc '07.

[7]  Dimitrios Gunopulos,et al.  Online outlier detection in sensor data using non-parametric models , 2006, VLDB.

[8]  Mani B. Srivastava,et al.  Reputation-based framework for high integrity sensor networks , 2004, SASN '04.

[9]  Dawn Xiaodong Song,et al.  SIA: secure information aggregation in sensor networks , 2003, SenSys '03.

[10]  Theodore S. Rappaport,et al.  SecureDAV: a secure data aggregation and verification protocol for sensor networks , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[11]  Yunghsiang Sam Han,et al.  A witness-based approach for data fusion assurance in wireless sensor networks , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[12]  Rajeev Motwani,et al.  Approximate Frequency Counts over Data Streams , 2012, VLDB.

[13]  Anish Mathuria,et al.  Efficient Secure Aggregation in Sensor Networks , 2004, HiPC.

[14]  Ran Canetti,et al.  Efficient authentication and signing of multicast streams over lossy channels , 2000, Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000.

[15]  Keith B. Frikken,et al.  An efficient integrity-preserving scheme for hierarchical sensor aggregation , 2008, WiSec '08.

[16]  Srinivasan Seshan,et al.  Synopsis diffusion for robust aggregation in sensor networks , 2004, SenSys '04.

[17]  W. R. Buckland,et al.  Outliers in Statistical Data , 1979 .

[18]  Vic Barnett,et al.  Outliers in Statistical Data , 1980 .

[19]  C. Castelluccia,et al.  Efficient aggregation of encrypted data in wireless sensor networks , 2005, The Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services.

[20]  Noga Alon,et al.  The space complexity of approximating the frequency moments , 1996, STOC '96.

[21]  Sencun Zhu,et al.  SDAP: a secure hop-by-Hop data aggregation protocol for sensor networks , 2006, MobiHoc '06.

[22]  Joseph M. Hellerstein,et al.  Proof Sketches: Verifiable In-Network Aggregation , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[23]  Suman Nath,et al.  Tributaries and deltas: efficient and robust aggregation in sensor network streams , 2005, SIGMOD '05.

[24]  Cristina Alcaraz,et al.  A Survey of Cryptographic Primitives and Implementations for Hardware-Constrained Sensor Network Nodes , 2007, Mob. Networks Appl..

[25]  Bruce G. Lindsay,et al.  Approximate medians and other quantiles in one pass and with limited memory , 1998, SIGMOD '98.

[26]  Gelareh Taban,et al.  Efficient Handling of Adversary Attacks in Aggregation Applications , 2008, ESORICS.

[27]  David A. Wagner,et al.  Resilient aggregation in sensor networks , 2004, SASN '04.

[28]  Graham Cormode,et al.  An improved data stream summary: the count-min sketch and its applications , 2004, J. Algorithms.

[29]  Haifeng Yu Secure and highly-available aggregation queries in large-scale sensor networks via set sampling , 2009, 2009 International Conference on Information Processing in Sensor Networks.

[30]  Sushil Jajodia,et al.  Attack-resilient hierarchical data aggregation in sensor networks , 2006, SASN '06.

[31]  Emiliano De Cristofaro,et al.  FAIR: fuzzy-based aggregation providing in-network resilience for real-time wireless sensor networks , 2009, WiSec '09.

[32]  Liviu Iftode,et al.  Probabilistic validation of aggregated data in vehicular ad-hoc networks , 2006, VANET '06.

[33]  Sudipto Guha,et al.  Approximate quantiles and the order of the stream , 2006, PODS.

[34]  Michael Dahlin,et al.  A scalable distributed information management system , 2004, SIGCOMM.

[35]  Graham Cormode,et al.  Holistic aggregates in a networked world: distributed tracking of approximate quantiles , 2005, SIGMOD '05.

[36]  Scott Shenker,et al.  The Architecture of PIER: an Internet-Scale Query Processor , 2005, CIDR.

[37]  Surajit Chaudhuri,et al.  Dynamic sample selection for approximate query processing , 2003, SIGMOD '03.

[38]  Luca Trevisan,et al.  Counting Distinct Elements in a Data Stream , 2002, RANDOM.

[39]  Jörg Schwenk,et al.  Provably Secure Framework for Information Aggregation in Sensor Networks , 2007, ICCSA.

[40]  Richard Han,et al.  Node Compromise in Sensor Networks: The Need for Secure Systems ; CU-CS-990-05 , 2005 .

[41]  Divyakant Agrawal,et al.  Medians and beyond: new aggregation techniques for sensor networks , 2004, SenSys '04.

[42]  Philippe Flajolet,et al.  Probabilistic Counting Algorithms for Data Base Applications , 1985, J. Comput. Syst. Sci..

[43]  Josep Domingo-Ferrer,et al.  A Provably Secure Additive and Multiplicative Privacy Homomorphism , 2002, ISC.

[44]  Martin Mauve,et al.  Probabilistic aggregation for data dissemination in VANETs , 2007, VANET '07.

[45]  Charalampos Manifavas,et al.  A new family of authentication protocols , 1998, OPSR.

[46]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[47]  Moses Charikar,et al.  Finding frequent items in data streams , 2002, Theor. Comput. Sci..

[48]  Dawn Xiaodong Song,et al.  Secure hierarchical in-network aggregation in sensor networks , 2006, CCS '06.

[49]  George Varghese,et al.  New directions in traffic measurement and accounting: Focusing on the elephants, ignoring the mice , 2003, TOCS.

[50]  Ralph C. Merkle,et al.  A Digital Signature Based on a Conventional Encryption Function , 1987, CRYPTO.

[51]  Phillip B. Gibbons Distinct Sampling for Highly-Accurate Answers to Distinct Values Queries and Event Reports , 2001, VLDB.

[52]  Sanjeev Khanna,et al.  Power-conserving computation of order-statistics over sensor networks , 2004, PODS.

[53]  Yee Wei Law,et al.  Survey and benchmark of block ciphers for wireless sensor networks , 2006, TOSN.

[54]  Jeffrey Considine,et al.  Approximate aggregation techniques for sensor databases , 2004, Proceedings. 20th International Conference on Data Engineering.

[55]  Jeffrey Xu Yu,et al.  Summarizing Order Statistics over Data Streams with Duplicates , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[56]  Daniel J. Abadi,et al.  REED: Robust, Efficient Filtering and Event Detection in Sensor Networks , 2005, VLDB.

[57]  Hasan Çam,et al.  Energy-efficient secure pattern based data aggregation for wireless sensor networks , 2006, Comput. Commun..

[58]  Wei Hong,et al.  Proceedings of the 5th Symposium on Operating Systems Design and Implementation Tag: a Tiny Aggregation Service for Ad-hoc Sensor Networks , 2022 .

[59]  Dimitrios Gunopulos,et al.  Efficient Approximate Query Processing in Peer-to-Peer Networks , 2007, IEEE Transactions on Knowledge and Data Engineering.

[60]  Dirk Westhoff,et al.  Concealed Data Aggregation for Reverse Multicast Traffic in Sensor Networks: Encryption, Key Distribution, and Routing Adaptation , 2006, IEEE Transactions on Mobile Computing.

[61]  Ran Wolff,et al.  Noname manuscript No. (will be inserted by the editor) In-Network Outlier Detection in Wireless Sensor Networks , 2022 .

[62]  Sanjeev Khanna,et al.  Space-efficient online computation of quantile summaries , 2001, SIGMOD '01.