A method for capturing the entire fuzzy non-dominated set of a fuzzy multi-criteria optimization problem

Abstract In this study, we consider the problem of capturing the complete fuzzy non-dominated set of fuzzy multi-criteria optimization problem. We investigate the problem from a fuzzy geometrical viewpoint. The fuzzy feasible regions on the decision space and on the criterion space are formulated using basic fuzzy geometrical ideas. The sup-min composition of the extension principle and the concept of inverse points in fuzzy geometry are used separately to formulate the fuzzy decision feasible region. We show that under a monotone condition on the constraint functions, both of the decision feasible regions are identical. Furthermore, we obtain that the inverse points method can greatly reduce the computational cost in evaluating the fuzzy constraint inequalities. Under the assumption that criteria of the problem are fuzzy number-valued functions, fuzzy points are obtained in the criterion space that correspond to each point in the fuzzy decision feasible region. The complete fuzzy criteria feasible region is the union of all of these fuzzy points. A fuzzy non-dominated set is defined on the formulated fuzzy criteria feasible region. A definition of a proper fuzzy non-dominated point is proposed for making the final decision. Different parts of the proposed methodology are demonstrated with suitable numerical examples and pictorial illustrations.

[1]  T. Nishida,et al.  Multiple criteria decision problems with fuzzy domination structures , 1980 .

[2]  R. Słowiński A multicriteria fuzzy linear programming method for water supply system development planning , 1986 .

[3]  Christer Carlsson,et al.  Fuzzy multiple criteria decision making: Recent developments , 1996, Fuzzy Sets Syst..

[4]  Ricardo C. Silva,et al.  The use of possibility theory in the definition of fuzzy Pareto-optimality , 2011, Fuzzy Optim. Decis. Mak..

[5]  Da Ruan,et al.  Mathematics of FuzzinessBasic Issues , 2009 .

[6]  Amelia Bilbao-Terol,et al.  Pareto-optimal solutions in fuzzy multi-objective linear programming , 2009, Fuzzy Sets Syst..

[7]  M. K. Luhandjula,et al.  An approach for solving a fuzzy multiobjective programming problem , 2014, Eur. J. Oper. Res..

[8]  S. Orlovsky Decision-making with a fuzzy preference relation , 1978 .

[9]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[10]  Debjani Chakraborty,et al.  A direction based classical method to obtain complete Pareto set of multi-criteria optimization problems , 2015 .

[11]  Masahiro Inuiguchi,et al.  Possible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency test , 1996, Fuzzy Sets Syst..

[12]  Swagatam Das,et al.  An Improved Multi-Objective Algorithm Based on Decomposition with Fuzzy Dominance for Deployment of Wireless Sensor Networks , 2011, SEMCCO.

[13]  M. K. Luhandjula Multiple objective programming problems with possibilistic coefficients , 1987 .

[14]  Amelia Bilbao-Terol,et al.  Solving the multiobjective possibilistic linear programming problem , 1999, Eur. J. Oper. Res..

[15]  Salvador Perez Canto,et al.  Application of Benders' decomposition to power plant preventive maintenance scheduling , 2008, Eur. J. Oper. Res..

[16]  Bijaya K. Panigrahi,et al.  Multi-objective optimization with artificial weed colonies , 2011, Inf. Sci..

[17]  C. Hwang,et al.  Fuzzy Multiple Objective Decision Making: Methods And Applications , 1996 .

[18]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[19]  Lily Rachmawati,et al.  A multi-objective evolutionary algorithm with weighted-sum niching for convergence on knee regions , 2006, GECCO '06.

[20]  Amelia Bilbao-Terol,et al.  Linear programming with fuzzy parameters: An interactive method resolution , 2007, Eur. J. Oper. Res..

[21]  Takashi Maeda,et al.  On characterization of fuzzy vectors and its applications to fuzzy mathematical programming problems , 2008, Fuzzy Sets Syst..

[22]  Debjani Chakraborty,et al.  Fuzzy ideal cone: A method to obtain complete fuzzy non-dominated set of fuzzy multi-criteria optimization problems with fuzzy parameters , 2013, 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[23]  Jin Peng,et al.  Fuzzy Dominance Based on Credibility Distributions , 2005, FSKD.

[24]  Sanjib Ganguly,et al.  Multi-objective particle swarm optimization based on fuzzy-Pareto-dominance for possibilistic planning of electrical distribution systems incorporating distributed generation , 2013, Fuzzy Sets Syst..

[25]  O. Weck,et al.  Fuzzy Pareto Frontiers in Multidisciplinary System Architecture Analysis , 2004 .

[26]  K. Deb,et al.  Understanding knee points in bicriteria problems and their implications as preferred solution principles , 2011 .

[27]  M. Koppen,et al.  A fuzzy scheme for the ranking of multivariate data and its application , 2004, IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04..

[28]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[29]  Indraneel Das On characterizing the “knee” of the Pareto curve based on Normal-Boundary Intersection , 1999 .

[30]  Mario Köppen,et al.  Fuzzy-Pareto-Dominance and its Application in Evolutionary Multi-objective Optimization , 2005, EMO.

[31]  Sanjib Ganguly,et al.  Fuzzy-Pareto-dominance driven possibilistic model based planning of electrical distribution systems using multi-objective particle swarm optimization , 2012, Expert Syst. Appl..

[32]  Heike Trautmann,et al.  Pareto-dominance in noisy environments , 2009, 2009 IEEE Congress on Evolutionary Computation.

[33]  Stability of multiobjective nonlinear programming problems with fuzzy parameters , 1993 .

[34]  Ian N. Durbach,et al.  Modeling uncertainty in multi-criteria decision analysis , 2012, Eur. J. Oper. Res..

[35]  R. Słowiński,et al.  Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty , 1990, Theory and Decision Library.

[36]  Cengiz Kahraman,et al.  Fuzzy Multi-Criteria Decision Making , 2008 .

[37]  O. P. Dias,et al.  The R & D project selection problem with fuzzy coefficients , 1988 .

[38]  P. Serafini,et al.  Scalarizing vector optimization problems , 1984 .

[39]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[40]  Ni-Bin Chang,et al.  A fuzzy multi-objective programming approach for optimal management of the reservoir watershed , 1997 .

[41]  Mila Bravo,et al.  Applying stochastic goal programming: A case study on water use planning , 2009, Eur. J. Oper. Res..

[42]  Cengiz Kahraman,et al.  Fuzzy Multi-Criteria Decision Making: Theory and Applications with Recent Developments , 2008 .

[43]  Marco Farina,et al.  A fuzzy definition of "optimality" for many-criteria optimization problems , 2004, IEEE Trans. Syst. Man Cybern. Part A.

[44]  Ponnuthurai N. Suganthan,et al.  An improved multi-objective optimization algorithm based on fuzzy dominance for risk minimization in biometric sensor network , 2012, 2012 IEEE Congress on Evolutionary Computation.

[45]  Debjani Chakraborty,et al.  A new method to obtain fuzzy Pareto set of fuzzy multi-criteria optimization problems , 2014, J. Intell. Fuzzy Syst..

[46]  Djamal Benslimane,et al.  Top-k Web Service Compositions Using Fuzzy Dominance Relationship , 2011, 2011 IEEE International Conference on Services Computing.

[47]  Masahiro Inuiguchi,et al.  Solution Concepts for Fuzzy Multiple Objective Programming Problems , 1990 .

[48]  Rudolf Marcel Smaling,et al.  System architecture analysis and selection under uncertainty , 2005 .

[49]  Etienne E. Kerre,et al.  Mathematics of Fuzziness - Basic Issues , 2009, Studies in Fuzziness and Soft Computing.

[50]  M. Sakawa,et al.  Feasibility and Pareto optimality for multiobjective nonlinear programming problems with fuzzy parameters , 1991 .

[51]  Debjani Chakraborty,et al.  Analytical fuzzy plane geometry I , 2012, Fuzzy Sets Syst..

[52]  Jaroslav Ramík,et al.  Optimal solutions in optimization problem with objective function depending on fuzzy parameters , 2007, Fuzzy Sets Syst..

[53]  Dorota Kuchta,et al.  Fuzzy pair-wise dominance and fuzzy indices: An evaluation of productive performance , 2003, Eur. J. Oper. Res..