Identification of carboxypeptidase and tryptic esterase activities that are complexed to proteoglycans in the secretory granules of human cloned natural killer cells.

Human cloned 35S-labeled NK cells were disrupted by nitrogen cavitation, and their secretory granules were obtained by filtration through 5-micron and 3-micron membrane filters followed by Percoll density-gradient centrifugation. These granule preparations, which contained 35S-labeled chondroitin sulfate A proteoglycans, were sonicated and were analyzed for carboxypeptidase activity and tryptic serine esterase activity. A carboxypeptidase activity that digested angiotensin I to des-Leu-angiotensin I, Ile-His-Pro-Phe to Ile-His-Pro and Phe, and hippuryl-L-phenylalanine to hippuric acid and Phe was detected in the granules of these NK cells. As determined by cleavage of the tetrapeptide, the pH optimum of the carboxypeptidase was 7.0. As assessed by the cleavage of N-benzyloxycarbonyl-L-lysine thiobenzyl ester (BLTe), the granule preparations also contained a serine esterase with trypsin-like specificity that had a pH optimum of 8.5. When the isolated secretory granules were disrupted and chromatographed on columns of Sepharose CL-2B in PBS, greater than 60% of the BLTe serine esterase activity and essentially all of the carboxypeptidase activity filtered as a macromolecular complex with approximately 8% of the 35S-labeled proteoglycans. Whereas treatment with 4 M urea or nonionic detergent failed to disrupt the macromolecular complex, the serine esterase activity was dissociated from the macromolecular complex in the presence of 3 M NaCl, demonstrating an ionic interaction with the proteoglycans. No difference was observed in the disaccharide composition of the chondroitin sulfate glycosaminoglycans of the 35S-labeled proteoglycans that were complexed with the enzymes as compared to those that were not complexed. These studies indicate that the secretory granules of human NK cells contain serine esterase activity and carboxypeptidase activity, both of which have neutral pH optima, and both of which are bound to protease-resistant chondroitin sulfate proteoglycans.