Coarse-to-fine optical flow estimation with image structure tensor

This paper proposes a novel coarse-to-fine optical flow method based on the image local structure tensor. The data term of the optical flow model is projected by combining the proposed structure tensor constancy assumption and the grey value constancy assumption with the robust penalty function, and an isotropic nonlinear function is planned to smoothing term. With the coarse-to-fine multiscale warping strategy, a linear iteration scheme is established. Several experimental results of the Middlebury sequences show that the presented method is high accuracy and good robustness.

[1]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[2]  J. Bigun,et al.  Optimal Orientation Detection of Linear Symmetry , 1987, ICCV 1987.

[3]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[4]  Julio Esclarín Monreal,et al.  A PDE model for computing the optimal flow , 1999 .

[5]  Azriel Rosenfeld,et al.  Accurate dense optical flow estimation using adaptive structure tensors and a parametric model , 2002, Object recognition supported by user interaction for service robots.

[6]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[7]  Joachim Weickert,et al.  Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.

[8]  Joachim Weickert,et al.  A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion , 2001, International Journal of Computer Vision.

[9]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[10]  Joachim Weickert,et al.  Towards ultimate motion estimation: combining highest accuracy with real-time performance , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[11]  Thomas Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Highly Accurate Optic Flow Computation with Theoretically Justified Warping Highly Accurate Optic Flow Computation with Theoretically Justified Warping , 2022 .

[12]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[13]  Alfred M. Bruckstein,et al.  Over-Parameterized Variational Optical Flow , 2007, International Journal of Computer Vision.

[14]  Nahum Kiryati,et al.  Coarse to over-fine optical flow estimation , 2007, Pattern Recognit..

[15]  Peter I. Corke,et al.  A new framework for force feedback teleoperation of robotic vehicles based on optical flow , 2009, 2009 IEEE International Conference on Robotics and Automation.

[16]  Daniel Cremers,et al.  Anisotropic Huber-L1 Optical Flow , 2009, BMVC.

[17]  Daniel Cremers,et al.  Structure- and motion-adaptive regularization for high accuracy optic flow , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[18]  P. Fihl,et al.  View-invariant gesture recognition using 3D optical flow and harmonic motion context , 2010, Comput. Vis. Image Underst..

[19]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Optic Flow in Harmony Optic Flow in Harmony Optic Flow in Harmony , 2022 .

[20]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Ming Li,et al.  Direct method for motion estimation and structure reconstruction based on optical flow , 2012 .