A New Zero-Inflated Negative Binomial Methodology for Latent Category Identification

We introduce a new statistical procedure for the identification of unobserved categories that vary between individuals and in which objects may span multiple categories. This procedure can be used to analyze data from a proposed sorting task in which individuals may simultaneously assign objects to multiple piles. The results of a synthetic example and a consumer psychology study involving categories of restaurant brands illustrate how the application of the proposed methodology to the new sorting task can account for a variety of categorization phenomena including multiple category memberships and for heterogeneity through individual differences in the saliency of latent category structures.

[1]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[2]  Selby H. Evans,et al.  Schematic concept formation: Demonstration in a free sorting task , 1967 .

[3]  Ralph Katz,et al.  Alternative Multidimensional Scaling Methods for Large Stimulus Sets , 1971 .

[4]  H. Akaike A new look at the statistical model identification , 1974 .

[5]  Moonja P. Kim,et al.  The Method of Sorting as a Data-Gathering Procedure in Multivariate Research. , 1975, Multivariate behavioral research.

[6]  J. Ramsay Maximum likelihood estimation in multidimensional scaling , 1977 .

[7]  A. Tversky Features of Similarity , 1977 .

[8]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[9]  Eleanor Rosch,et al.  Principles of Categorization , 1978 .

[10]  E. Rosch,et al.  Cognition and Categorization , 1980 .

[11]  Roger N. Shepard,et al.  Additive clustering: Representation of similarities as combinations of discrete overlapping properties. , 1979 .

[12]  T. D. Klastorin,et al.  Merging groups to maximize object partition comparison , 1980 .

[13]  Y. Takane Analysis of Categorizing Behavior by a Quantification Method , 1980 .

[14]  James O. Ramsay,et al.  The joint analysis of direct ratings, pairwise preferences, and dissimilarities , 1980 .

[15]  Charles Vlek,et al.  Judging risks and benefits in the small and in the large , 1981 .

[16]  P. Arabie,et al.  Overlapping Clustering: A New Method for Product Positioning , 1981 .

[17]  Philip E. Gill,et al.  Practical optimization , 1981 .

[18]  E. Rosch,et al.  Categorization of Natural Objects , 1981 .

[19]  Richard L. Degerman Ordered binary trees constructed through an application of Kendall's tau , 1982 .

[20]  P. Arabie,et al.  Indclus: An individual differences generalization of the adclus model and the mapclus algorithm , 1983 .

[21]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[22]  W. DeSarbo,et al.  The representation of three-way proximity data by single and multiple tree structure models , 1984 .

[23]  A. Isen,et al.  Toward understanding the role of affect in cognition. , 1984 .

[24]  A. W. Kemp,et al.  The Dirichlet: A comprehensive model of buying behaviour , 1984 .

[25]  Geoffrey J. McLachlan,et al.  The mixture method of clustering applied to three-way data , 1985 .

[26]  H. Bozdogan Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions , 1987 .

[27]  Jaewun Cho,et al.  A stochastic multidimensional scaling vector threshold model for the spatial representation of “pick any/n” data , 1989 .

[28]  A. Ehrenberg,et al.  Repeat-Buying: Facts, Theory and Applications. , 1989 .

[29]  J. Douglas Carroll,et al.  A quasi-nonmetric method for multidimensional scaling VIA an extended euclidean model , 1989 .

[30]  B. Loken,et al.  Alternative Approaches to Understanding the Determinants of Typicality , 1990 .

[31]  Andrew Ehrenberg,et al.  Repeat-buying : facts, theory and applications , 1991 .

[32]  Kamel Jedidi,et al.  A new clustering methodology for the analysis of sorted or categorized stimuli , 1991 .

[33]  Richard T. Carson,et al.  Models for truncated counts , 1991 .

[34]  Wayne S. DeSarbo,et al.  A Latent Class Binomial Logit Methodology for the Analysis of Paired Comparison Choice Data: An Application Reinvestigating the Determinants of Perceived Risk , 1993 .

[35]  T. K. Srull,et al.  Handbook of Social Cognition , 1993 .

[36]  D. Gentner,et al.  Respects for similarity , 1993 .

[37]  Suzanne Winsberg,et al.  A latent class approach to fitting the weighted Euclidean model, clascal , 1993 .

[38]  W. DeSarbo,et al.  A Disaggregate Negative Binomial Regression Procedure for Count Data Analysis , 1994 .

[39]  B. Ross,et al.  Predictions From Uncertain Categorizations , 1994, Cognitive Psychology.

[40]  W. Greene,et al.  Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models , 1994 .

[41]  Robert L. Goldstone The role of similarity in categorization: providing a groundwork , 1994, Cognition.

[42]  Michel Wedel,et al.  The effects of alternative methods of collecting similarity data for Multidimensional Scaling , 1995 .

[43]  B. Ross,et al.  Predicting features for members of natural categories when categorization is uncertain. , 1995, Journal of experimental psychology. Learning, memory, and cognition.

[44]  Robert F. Easley,et al.  A Single Ideal Point Model for Market Structure Analysis , 1995 .

[45]  A. Milne,et al.  The dissection of selection in person perception: inhibitory processes in social stereotyping. , 1995, Journal of personality and social psychology.

[46]  J. Daws The analysis of free-sorting data: Beyond pairwise cooccurrences , 1996 .

[47]  F. Windmeijer,et al.  An R-squared measure of goodness of fit for some common nonlinear regression models , 1997 .

[48]  M. Wedel,et al.  Market Segmentation: Conceptual and Methodological Foundations , 1997 .

[49]  J. Hampton Similarity-based categorization and fuzziness of natural categories , 1998, Cognition.

[50]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[51]  Brian H. Ross,et al.  Food for Thought: Cross-Classification and Category Organization in a Complex Real-World Domain , 1999, Cognitive Psychology.

[52]  Anthony Peter Macmillan Coxon,et al.  Sorting Data: Collection and Analysis , 1999 .

[53]  Wayne S. Desarbo,et al.  The Joint Spatial Representation of Multiple Variable Batteries Collected in Marketing Research , 2001 .

[54]  M. Lee On the Complexity of Additive Clustering Models. , 2001, Journal of mathematical psychology.

[55]  Lynette A. Hunt,et al.  Fitting a Mixture Model to Three-mode Three-way Data with Missing Information , 2001, J. Classif..

[56]  A. Markman,et al.  “What Is It?” Categorization Flexibility and Consumers' Responses to Really New Products , 2001 .

[57]  Shibo Li,et al.  Modeling Category Viewership of Web Users with Multivariate Count Models , 2002 .

[58]  Nick Chater,et al.  Unsupervised Categorization and Category Learning , 2005, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[59]  Min Zhao,et al.  When Categorization is Ambiguous: Factors that Facilitate the Use of a Multiple Category Inference Strategy , 2005 .

[60]  J. Edward Russo,et al.  Leader-Driven Primacy: Using Attribute Order to Affect Consumer Choice , 2006 .

[61]  Jeroen K. Vermunt A hierarchical mixture model for clustering three-way data sets , 2007, Comput. Stat. Data Anal..

[62]  Chih-Chien Yang,et al.  Separating Latent Classes by Information Criteria , 2007, J. Classif..

[63]  Chris Janiszewski,et al.  Context-Dependent Effects of Goal Primes , 2008 .

[64]  Lawrence W. Barsalou,et al.  Categorization Theory and Research in Consumer Psychology , 2008 .

[65]  Lawrence W. Barsalou,et al.  Categorization theory and research in consumer psychology: category representation and category-based inference , 2008 .

[66]  Priyali Rajagopal,et al.  Consumer Evaluations of Hybrid Products , 2009 .

[67]  W. DeSarbo,et al.  The Heterogeneous P-Median Problem for Categorization Based Clustering , 2012, Psychometrika.

[68]  W. DeSarbo,et al.  Identifying consumer heterogeneity in unobserved categories , 2011, Marketing Letters.

[69]  Daniel Aloise,et al.  The Heterogeneous P-Median for Categorization Based Clustering , 2012 .