Gallic acid enhances anti-lymphoma function of anti-CD19 CAR-T cells in vitro and in vivo

[1]  F. Ghiringhelli,et al.  Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness , 2022, Oncoimmunology.

[2]  Ansuman T. Satpathy,et al.  RASA2 ablation in T cells boosts antigen sensitivity and long-term function , 2022, Nature.

[3]  Guan Jiang,et al.  IDO Inhibitor and Gallic Acid Cross-Linked Small Molecule Drug Synergistic Treatment of Melanoma , 2022, Frontiers in Oncology.

[4]  Michael L. Wang,et al.  BTK Inhibitors and CAR T-Cell Therapy in Treating Mantle Cell Lymphoma—Finding a Dancing Partner , 2022, Current Oncology Reports.

[5]  J. Melenhorst,et al.  STAT3 Role in T-Cell Memory Formation , 2022, International journal of molecular sciences.

[6]  Yue Zhang,et al.  Bryostatin Activates CAR T-Cell Antigen-Non-Specific Killing (CTAK), and CAR-T NK-Like Killing for Pre-B ALL, While Blocking Cytolysis of a Burkitt Lymphoma Cell Line , 2022, Frontiers in Immunology.

[7]  Xiaoquan Jiang,et al.  Mechanism of Paeoniae Radix Alba in the Treatment of Non-alcoholic Fatty Liver Disease Based on Sequential Metabolites Identification Approach, Network Pharmacology, and Binding Affinity Measurement , 2021, Frontiers in Nutrition.

[8]  Guohua Yu,et al.  Integrated Systems Pharmacology and Surface Plasmon Resonance Approaches to Reveal the Synergistic Effect of Multiple Components of Gu-Ben-Ke-Chuan Decoction on Chronic Bronchitis , 2021, Journal of inflammation research.

[9]  Rosalie M Sterner,et al.  CAR-T cell therapy: current limitations and potential strategies , 2021, Blood Cancer Journal.

[10]  Li Yang,et al.  CRISPR/Cas9-Engineered Universal CD19/CD22 Dual-Targeted CAR-T Cell Therapy for Relapsed/Refractory B-cell Acute Lymphoblastic Leukemia , 2021, Clinical Cancer Research.

[11]  Zongzhi Z. Liu,et al.  Low-dose decitabine priming endows CAR T cells with enhanced and persistent antitumour potential via epigenetic reprogramming , 2021, Nature Communications.

[12]  J. Serody,et al.  STING agonist promotes CAR T cell trafficking and persistence in breast cancer , 2020, The Journal of experimental medicine.

[13]  Jiang F Zhong,et al.  Recent advances in CAR-T cell engineering , 2020, Journal of Hematology & Oncology.

[14]  Lei Sun,et al.  Synergistic effect of ibrutinib and CD19 CAR‐T cells on Raji cells in vivo and in vitro , 2020, Cancer science.

[15]  G. Coukos,et al.  All systems go: converging synthetic biology and combinatorial treatment for CAR-T cell therapy. , 2020, Current opinion in biotechnology.

[16]  R. Brentjens,et al.  Engineering strategies to overcome the current roadblocks in CAR T cell therapy , 2019, Nature Reviews Clinical Oncology.

[17]  S. Tu,et al.  Mechanisms of Relapse After CD19 CAR T-Cell Therapy for Acute Lymphoblastic Leukemia and Its Prevention and Treatment Strategies , 2019, Front. Immunol..

[18]  B. Shi,et al.  An IL-4/21 Inverted Cytokine Receptor Improving CAR-T Cell Potency in Immunosuppressive Solid-Tumor Microenvironment , 2019, Front. Immunol..

[19]  R. Brentjens,et al.  CAR T‐cell therapy: Full speed ahead , 2019, Hematological oncology.

[20]  R. Orentas,et al.  CD19 CAR T cell product and disease attributes predict leukemia remission durability. , 2019, The Journal of clinical investigation.

[21]  M. Milone,et al.  An introduction to chimeric antigen receptor (CAR) T‐cell immunotherapy for human cancer , 2019, American journal of hematology.

[22]  Haifeng Song,et al.  A safe and potent anti-CD19 CAR T cell therapy , 2019, Nature Medicine.

[23]  H. Meng,et al.  Gallic acid targets acute myeloid leukemia via Akt/mTOR-dependent mitochondrial respiration inhibition. , 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[24]  Yali Wang,et al.  Combination therapy: A feasibility strategy for CAR-T cell therapy in the treatment of solid tumors , 2018, Oncology letters.

[25]  Hans Bitter,et al.  Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia , 2018, Nature Medicine.

[26]  K. Tamada,et al.  IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor , 2018, Nature Biotechnology.

[27]  M. Minden,et al.  A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects , 2017, Nature Medicine.

[28]  H. Shirzad,et al.  Interaction between Gallic acid and Asparaginase to potentiate anti-proliferative effect on lymphoblastic leukemia cell line. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[29]  Xi Zheng,et al.  Natural Products as Adjunctive Treatment for Pancreatic Cancer: Recent Trends and Advancements , 2017 .

[30]  J. Byrd,et al.  Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. , 2016, Blood.

[31]  Xu Wang,et al.  Aberrant expression of p-STAT3 in peripheral blood CD4+ and CD8+ T cells related to hepatocellular carcinoma development. , 2014, Molecular medicine reports.

[32]  K. Yanagihara,et al.  Activated T–cell-mediated Immunotherapy With a Chimeric Receptor Against CD38 in B-cell Non-Hodgkin Lymphoma , 2009, Journal of immunotherapy.

[33]  P. Irusta,et al.  IL‐4 induces a wide‐spectrum intracellular signaling cascade in CD8+ T cells , 2007, Journal of leukocyte biology.

[34]  J. Issa,et al.  Decitabine dosing schedules. , 2005, Seminars in hematology.

[35]  Shufeng Zhou,et al.  5,6-Dimethylxanthenone-4-Acetic Acid (DMXAA): a New Biological Response Modifier for Cancer Therapy , 2002, Investigational New Drugs.

[36]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[37]  W. Paul,et al.  The IL-4 receptor: signaling mechanisms and biologic functions. , 1999, Annual review of immunology.

[38]  R. Abraham,et al.  Protein-tyrosine kinase-dependent activation of STAT transcription factors in interleukin-2- or interleukin-4-stimulated T lymphocytes , 1995, The Journal of Biological Chemistry.