miR-27 regulates chondrogenesis by suppressing focal adhesion kinase during pharyngeal arch development

[1]  Dionna M. Kasper,et al.  In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 nuclease system , 2016, Scientific Reports.

[2]  C. Niehrs,et al.  Morpholinos: Antisense and Sensibility. , 2015, Developmental cell.

[3]  Marcus Krüger,et al.  Genetic compensation induced by deleterious mutations but not gene knockdowns , 2015, Nature.

[4]  Sheng-Ping L. Hwang,et al.  Control of Wnt5b secretion by Wntless modulates chondrogenic cell proliferation through fine-tuning fgf3 expression , 2015, Journal of Cell Science.

[5]  J. G. Patton,et al.  miR-216a regulates snx5, a novel notch signaling pathway component, during zebrafish retinal development. , 2015, Developmental biology.

[6]  A. Lassar,et al.  A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation , 2015, Development.

[7]  Yue Huang,et al.  Functional screen reveals essential roles of miR‐27a/24 in differentiation of embryonic stem cells , 2015, The EMBO journal.

[8]  Zacharias Kontarakis,et al.  Making sense of anti-sense data. , 2015, Developmental cell.

[9]  C. Betsholtz,et al.  Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. , 2015, Developmental cell.

[10]  J. Schwarzbauer,et al.  Fibronectin matrix assembly is essential for cell condensation during chondrogenesis , 2014, Journal of Cell Science.

[11]  Y. E. Chen,et al.  MicroRNA-27 (miR-27) Targets Prohibitin and Impairs Adipocyte Differentiation and Mitochondrial Function in Human Adipose-derived Stem Cells* , 2013, The Journal of Biological Chemistry.

[12]  E. Knapik,et al.  An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme , 2013, Development.

[13]  S. Weiss,et al.  MT1-MMP-dependent control of skeletal stem cell commitment via a β1-integrin/YAP/TAZ signaling axis. , 2013, Developmental cell.

[14]  J. G. Patton,et al.  miR-153 Regulates SNAP-25, Synaptic Transmission, and Neuronal Development , 2013, PloS one.

[15]  A. Meng,et al.  MicroRNA-92a upholds Bmp signaling by targeting noggin3 during pharyngeal cartilage formation. , 2013, Developmental cell.

[16]  M. Sheetz,et al.  Force-dependent cell signaling in stem cell differentiation , 2012, Stem Cell Research & Therapy.

[17]  J. G. Patton,et al.  Transcriptome-wide analysis of small RNA expression in early zebrafish development. , 2012, RNA.

[18]  D. Raible,et al.  Bmps and Id2a Act Upstream of Twist1 To Restrict Ectomesenchyme Potential of the Cranial Neural Crest , 2012, PLoS genetics.

[19]  J. Licht,et al.  miR-27b controls venous specification and tip cell fate. , 2012, Blood.

[20]  Andrea Knau,et al.  MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. , 2012, Blood.

[21]  Thomas Boudou,et al.  A hitchhiker's guide to mechanobiology. , 2011, Developmental cell.

[22]  Yukio Nakamura,et al.  Chondrocyte-Specific MicroRNA-140 Regulates Endochondral Bone Development and Targets Dnpep To Modulate Bone Morphogenetic Protein Signaling , 2011, Molecular and Cellular Biology.

[23]  E. Olson,et al.  Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23∼27∼24 clusters , 2011, Proceedings of the National Academy of Sciences.

[24]  J. G. Patton,et al.  Regulation of endoderm formation and left-right asymmetry by miR-92 during early zebrafish development , 2011, Development.

[25]  E. Izaurralde,et al.  Gene silencing by microRNAs: contributions of translational repression and mRNA decay , 2011, Nature Reviews Genetics.

[26]  D. Srivastava,et al.  The neural crest-enriched microRNA miR-452 regulates epithelial-mesenchymal signaling in the first pharyngeal arch , 2010, Development.

[27]  Andre J. van Wijnen,et al.  A network connecting Runx2, SATB2, and the miR-23a∼27a∼24-2 cluster regulates the osteoblast differentiation program , 2010, Proceedings of the National Academy of Sciences.

[28]  W. Filipowicz,et al.  The widespread regulation of microRNA biogenesis, function and decay , 2010, Nature Reviews Genetics.

[29]  O. Gavet,et al.  Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. , 2010, Developmental cell.

[30]  A. Zehir,et al.  Dicer is required for survival of differentiating neural crest cells. , 2010, Developmental biology.

[31]  Lin Gao,et al.  Stem Cell Shape Regulates a Chondrogenic Versus Myogenic Fate Through Rac1 and N‐Cadherin , 2010, Stem cells.

[32]  Melissa L Knothe Tate,et al.  Modulation of stem cell shape and fate A: the role of density and seeding protocol on nucleus shape and gene expression. , 2008, Tissue engineering. Part A.

[33]  J. Eisen,et al.  Controlling morpholino experiments: don't stop making antisense , 2008, Development.

[34]  A. McMahon,et al.  Dicer-dependent pathways regulate chondrocyte proliferation and differentiation , 2008, Proceedings of the National Academy of Sciences.

[35]  J. Postlethwait,et al.  MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis , 2008, Nature Genetics.

[36]  Melissa Hardy,et al.  The Tol2kit: A multisite gateway‐based construction kit for Tol2 transposon transgenesis constructs , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[37]  A. Leask,et al.  Src kinase inhibition promotes the chondrocyte phenotype , 2007, Arthritis research & therapy.

[38]  F. Beier,et al.  Regulation of chondrocyte differentiation by the actin cytoskeleton and adhesive interactions , 2007, Journal of cellular physiology.

[39]  Wigard P Kloosterman,et al.  Targeted Inhibition of miRNA Maturation with Morpholinos Reveals a Role for miR-375 in Pancreatic Islet Development , 2007, PLoS biology.

[40]  C. Brenner,et al.  p53 Activation by Knockdown Technologies , 2007, PLoS genetics.

[41]  Yong Zhao,et al.  A developmental view of microRNA function. , 2007, Trends in biochemical sciences.

[42]  J. G. Patton,et al.  Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate , 2007, Nature Genetics.

[43]  R. Kelsh,et al.  In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development , 2006, Nature Neuroscience.

[44]  R. Plasterk,et al.  The diverse functions of microRNAs in animal development and disease. , 2006, Developmental cell.

[45]  F. Beier,et al.  RhoA/ROCK Signaling Regulates Chondrogenesis in a Context-dependent Manner* , 2006, Journal of Biological Chemistry.

[46]  H. Horvitz,et al.  MicroRNA Expression in Zebrafish Embryonic Development , 2005, Science.

[47]  H. Kondoh,et al.  Integrinalpha5-dependent fibronectin accumulation for maintenance of somite boundaries in zebrafish embryos. , 2005, Developmental cell.

[48]  F. Beier,et al.  RhoA/ROCK Signaling Regulates Sox9 Expression and Actin Organization during Chondrogenesis* , 2005, Journal of Biological Chemistry.

[49]  H. Mitani,et al.  Stepwise mechanical stretching inhibits chondrogenesis through cell-matrix adhesion mediated by integrins in embryonic rat limb-bud mesenchymal cells. , 2005, European journal of cell biology.

[50]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[51]  S. Creuzet,et al.  Neural crest cell plasticity and its limits , 2004, Development.

[52]  Kathryn E. Crosier,et al.  Duplicate zebrafish runx2 orthologues are expressed in developing skeletal elements. , 2004, Gene expression patterns : GEP.

[53]  B. Hall,et al.  Divide, accumulate, differentiate: cell condensation in skeletal development revisited. , 2004, The International journal of developmental biology.

[54]  Todd A. Clason,et al.  Activity and distribution of paxillin, focal adhesion kinase, and cadherin indicate cooperative roles during zebrafish morphogenesis. , 2003, Molecular biology of the cell.

[55]  J. Parsons,et al.  Focal adhesion kinase: the first ten years , 2003, Journal of Cell Science.

[56]  H. Mitani,et al.  Effect of stretching on gene expression of beta1 integrin and focal adhesion kinase and on chondrogenesis through cell-extracellular matrix interactions. , 2003, European journal of cell biology.

[57]  J. Postlethwait,et al.  A zebrafish sox9 gene required for cartilage morphogenesis. , 2002, Development.

[58]  B. Weinstein,et al.  In vivo imaging of embryonic vascular development using transgenic zebrafish. , 2002, Developmental biology.

[59]  P. Yelick,et al.  Molecular dissection of craniofacial development using zebrafish. , 2002, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[60]  Y. Yan,et al.  Roles for zebrafish focal adhesion kinase in notochord and somite morphogenesis. , 2001, Developmental biology.

[61]  R. Kelsh,et al.  Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. , 2001, Development.

[62]  Y. Yan,et al.  Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. , 2001, Developmental biology.

[63]  R. Kelsh,et al.  Expression of zebrafish fkd6 in neural crest-derived glia , 2000, Mechanisms of Development.

[64]  B. Hall,et al.  All for one and one for all: condensations and the initiation of skeletal development. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[65]  Richard R. Behringer,et al.  Sox9 is required for cartilage formation , 1999, Nature Genetics.

[66]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[67]  J. Postlethwait,et al.  Expression of a type II collagen gene in the zebrafish embryonic axis , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[68]  M. Westerfield,et al.  Combinatorial expression of three zebrafish genes related to distal- less: part of a homeobox gene code for the head , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  C. Kimmel,et al.  Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. , 1994, Development.

[70]  J. Clayton-Smith Syndromes of the Head and Neck , 1993 .

[71]  N M Le Douarin,et al.  The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. , 1993, Development.

[72]  A. Graham,et al.  Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. , 1991, Development.

[73]  E. Dupin,et al.  Common precursors for neural and mesectodermal derivatives in the cephalic neural crest. , 1991, Development.

[74]  F. N. Silverman,et al.  Syndromes of the Head and Neck. , 1965 .

[75]  Wenbiao Chen,et al.  Generation of Targeted Mutations in Zebrafish Using the CRISPR/Cas System. , 2015, Methods in molecular biology.

[76]  B. Thisse,et al.  High-resolution in situ hybridization to whole-mount zebrafish embryos , 2007, Nature Protocols.

[77]  D. A. Hanson,et al.  Focal adhesion kinase: in command and control of cell motility , 2005, Nature Reviews Molecular Cell Biology.

[78]  W. Woodward,et al.  Embryonic limb mesenchyme micromass culture as an in vitro model for chondrogenesis and cartilage maturation. , 2000, Methods in molecular biology.

[79]  C. Walker,et al.  Haploid screens and gamma-ray mutagenesis. , 1999, Methods in cell biology.