Preparation of anode material zinc ferrite by molten salt method and its electrochemical performance

[1]  Lei Zhou,et al.  ZnFe2O4 Hollow Rods Enabling Accelerated Polysulfide Conversion for Advanced Lithium-Sulfur Batteries , 2022, Electrochimica Acta.

[2]  M. Bini,et al.  ZnFe2O4, a Green and High-Capacity Anode Material for Lithium-Ion Batteries: A Review , 2021, Applied Sciences.

[3]  Lei Zhang,et al.  The influence of F− ion on the electrochemical behavior and coordination properties of uranium in LiCl-KCl molten salt , 2021, Electrochimica Acta.

[4]  Norhisam Misron,et al.  A comprehensive review on system architecture and international standards for electric vehicle charging stations , 2021 .

[5]  Xiangchun Liu,et al.  Preparation and characterization of (Zr0.8,Sn0.2)TiO4 nano crystals by hydrothermal-molten salt method , 2021, Journal of Sol-Gel Science and Technology.

[6]  Wenli Zhang,et al.  Carbon nitride derived nitrogen-doped carbon nanosheets for high-rate lithium-ion storage , 2021 .

[7]  Jing Mao,et al.  Review—Research Progress on Layered Transition Metal Oxide Cathode Materials for Sodium Ion Batteries , 2021 .

[8]  Jingran Shi,et al.  Effects of specific surface area of electrode and different electrolyte on capacitance properties in nano porous-structure CrN thin film electrode for supercapacitor , 2021, Ceramics International.

[9]  Daniel Felipe Jaramillo-Cabanzo,et al.  One-dimensional nanomaterials in lithium-ion batteries , 2020, Journal of Physics D: Applied Physics.

[10]  Richard Appiah-Ntiamoah,et al.  In Situ Electrochemical Formation of a Core‐Shell ZnFe 2 O 4 @Zn(Fe)OOH Heterostructural Catalyst for Efficient Water Oxidation in Alkaline Medium , 2020 .

[11]  L. Weng,et al.  Synthesis of porous nanosheet-assembled ZnFe2O4@polypyrrole yolk-shell microspheres as anode materials for high-rate lithium-ion batteries , 2020 .

[12]  K. Kim,et al.  High energy and long cycles , 2020 .

[13]  Yuzhu Li,et al.  Double-protected zinc ferrite nanospheres as high rate and stable anode materials for lithium ion batteries , 2019 .

[14]  Yulong Ding,et al.  A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications , 2019 .

[15]  L. Mei,et al.  A germanium and zinc chalcogenide as an anode for a high-capacity and long cycle life lithium battery , 2019, RSC advances.

[16]  Q. Jiang,et al.  ZnFe2O4@PPy core-shell structure for high-rate lithium-ion storage , 2019, Journal of Electroanalytical Chemistry.

[17]  C. Zauner,et al.  High-density polyethylene as phase-change material: Long-term stability and aging , 2019, Polymer Testing.

[18]  Ming Jia,et al.  N-doped carbon encapsulated porous MnO/Mn3O4 submicrospheres as high-performance anode for lithium-ion batteries , 2019, Journal of Electroanalytical Chemistry.

[19]  Guoxiu Wang,et al.  Phase transition induced synthesis of one dimensional In1−xZnxOy heterogeneous nanofibers for superior lithium ion storage , 2019, Applied Surface Science.

[20]  M. Fang,et al.  Molten salt synthesis, growth mechanism, and photoluminescence of rod chlorapatite microcrystallites , 2019, CrystEngComm.

[21]  Q. Zhang,et al.  Reduced graphene oxide wrap buffering volume expansion of Mn2SnO4 anodes for enhanced stability in lithium-ion batteries. , 2019, Dalton transactions.

[22]  Jongryoul Kim,et al.  Magnetic Properties and Morphologies of Synthesized Strontium Ferrite Powders by the Molten Salt Method , 2018, IEEE Transactions on Magnetics.

[23]  Huan-Huan Li,et al.  ZnFe2O4/MoS2/rGO composite as an anode for rechargeable Lithium-ion batteries , 2018, Journal of Electroanalytical Chemistry.

[24]  M. Maaza,et al.  Green synthesis of novel zinc iron oxide (ZnFe2O4) nanocomposite via Moringa Oleifera natural extract for electrochemical applications , 2018, Applied Surface Science.

[25]  Gaofeng Wang,et al.  Reduced graphene oxide wrapped ZnMn2O4/carbon nanofibers for long-life lithium-ion batteries , 2018 .

[26]  V. Berbenni,et al.  Ca- and Al-doped ZnFe2O4 nanoparticles as possible anode materials , 2018, Journal of Solid State Electrochemistry.

[27]  R. Behm,et al.  ZnO/ZnFe2O4/N-doped C micro-polyhedrons with hierarchical hollow structure as high-performance anodes for lithium-ion batteries , 2017 .

[28]  Yanling Xiao,et al.  Facial synthesis of carbon-coated ZnFe2O4/graphene and their enhanced lithium storage properties , 2017, Journal of Nanoparticle Research.

[29]  S. Sagadevan,et al.  Synthesis and characterization of NiFe2O4, CoFe2O4 and CuFe2O4 thin films for anode material in Li-ion batteries , 2017 .

[30]  Martin Sivek,et al.  Traditional energy resources in India (coal, crude oil, natural gas): A review , 2017 .

[31]  S. Navale,et al.  High Capacity Retention Anode Material for Lithium Ion Battery , 2016 .

[32]  G. Sui,et al.  High Performance and Biodegradable Skeleton Material Based on Soy Protein Isolate for Gel Polymer Electrolyte , 2016 .

[33]  Shuwei Li,et al.  Performance Enhancement of Nanostructure Silicon Anode for Lithium Ion Battery , 2016 .

[34]  Jian Yang,et al.  Porous ZnFe2O4 Nanospheres Grown on Graphene Nanosheets as a Superior Anode Material for Lithium Ion Batteries , 2012 .

[35]  Li Wang,et al.  Nanometer copper–tin alloy anode material for lithium-ion batteries , 2007 .