From Proof-Nets to Linear Logic Type Systems for Polynomial Time Computing

In this presentation we give an overview of Dual Light Affine Logic (DLAL), a polymorphic type system for lambda calculus ensuring that typable lambda terms are executable in polynomial time. We stress the importance of proof-nets from Light linear logic for the design of this type system and for a result establishing that typable lambda-terms can be evaluated efficiently with optimal reduction. We also discuss the issue of DLAL type inference, which can be performed in polynomial time for system F terms. These results have been obtained in collaborations with Terui [1], Atassi and Terui [2], and Coppola and Dal Lago [3].

[1]  Ugo Dal Lago,et al.  Light Logics and Optimal Reduction: Completeness and Complexity , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[2]  Martín Abadi,et al.  The geometry of optimal lambda reduction , 1992, POPL '92.

[3]  Andre Scedrov,et al.  Bounded Linear Logic: A Modular Approach to Polynomial-Time Computability , 1992, Theor. Comput. Sci..

[4]  Paolo Coppola,et al.  Principal Typing for Lambda Calculus in Elementary Affine Logic , 2004, Fundam. Informaticae.

[5]  Sam Lindley,et al.  Extensional Rewriting with Sums , 2007, TLCA.

[6]  Martin Hofmann,et al.  Linear types and non-size-increasing polynomial time computation , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[7]  Damiano Mazza Linear logic and polynomial time , 2006, Math. Struct. Comput. Sci..

[8]  D. Leivant Ramified Recurrence and Computational Complexity I: Word Recurrence and Poly-time , 1995 .

[9]  Ugo Dal Lago Context Semantics, Linear Logic and Computational Complexity , 2005, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[10]  Daniel Leivant,et al.  Lambda Calculus Characterizations of Poly-Time , 1993, Fundam. Informaticae.

[11]  Ugo Dal Lago,et al.  Elementary Affine Logic and the Call-by-Value Lambda Calculus , 2005, TLCA.

[12]  Kazushige Terui,et al.  Light types for polynomial time computation in lambda-calculus , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[13]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.

[14]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[15]  Andrea Asperti,et al.  Intuitionistic Light Affine Logic , 2002, TOCL.

[16]  Michael Mendler,et al.  The NASA STI Program Office provides , 2000 .

[17]  Kazushige Terui,et al.  Light types for polynomial time computation in lambda-calculus , 2004, LICS 2004.

[18]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[19]  Andrea Asperti Light affine logic , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[20]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[21]  John Lamping,et al.  An algorithm for optimal lambda calculus reduction , 1989, POPL '90.

[22]  Kazushige Terui Light affine lambda calculus and polynomial time strong normalization , 2007, Arch. Math. Log..

[23]  Paolo Coppola,et al.  Optimizing optimal reduction: A type inference algorithm for elementary affine logic , 2006, TOCL.

[24]  Kazushige Terui,et al.  Verification of Ptime Reducibility for System F Terms Via Dual Light Affine Logic , 2006, CSL.

[25]  Neil D. Jones,et al.  LOGSPACE and PTIME Characterized by Programming Languages , 1999, Theor. Comput. Sci..