Disproving the Single Level Conjecture

We consider the size of monotone circuits for quadratic Boolean functions, that is, disjunctions of length-2 monomials. Our motivation is that a good (linear in the number of variables) lower bound on the monotone circuit size for a certain type of quadratic function would imply a good (even exponential) lower bound on the general nonmonotone circuit size. To get more insight into the structure of monotone circuits for quadratic functions, we consider the so-called single level conjecture posed explicitly in the early 1990s. The conjecture claims that monotone single level circuits, that is, circuits which have only one level of AND gates, for quadratic functions are not much larger than arbitrary monotone circuits. In this paper we disprove the conjecture as follows: there exist quadratic functions whose monotone circuits have linear size but whose monotone single level circuits require almost quadratic size.

[1]  Claus-Peter Schnorr,et al.  The Multiplicative Complexity of Quadratic Boolean Forms , 1992, Theor. Comput. Sci..

[2]  Nicholas Pippenger The complexity of monotone boolean functions , 2005, Mathematical systems theory.

[3]  E. Kushilevitz Communication Complexity , 1997, Adv. Comput..

[4]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[5]  N. Nisan The communication complexity of threshold gates , 1993 .

[6]  Ingo Wegener,et al.  More on the Complexity of Slice Functions , 1986, Theor. Comput. Sci..

[7]  P. Erdös,et al.  The Representation of a Graph by Set Intersections , 1966, Canadian Journal of Mathematics.

[8]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[9]  E. Weisstein Kneser's Conjecture , 2002 .

[10]  Ingo Wegener,et al.  The Conjunctive Complexity of Quadratic Boolean Functions , 1991, Theor. Comput. Sci..

[11]  Siegfried Bublitz,et al.  Decomposition of graphs and monotone formula size of homogeneous functions , 1986, Acta Informatica.

[12]  Rajeev Motwani,et al.  Randomized algorithms , 1996, CSUR.

[13]  Zsolt Tuza,et al.  Covering of graphs by complete bipartite subgraphs; Complexity of 0–1 matrices , 1984, Comb..

[14]  R. E. Krichevskii,et al.  Complexity of Contact Circuits Realizing a Function of Logical Algebra , 1964 .

[15]  J. Spencer,et al.  On the decomposition of graphs into complete bipartite subgraphs , 1983 .

[16]  R. Tarjan Complexity of monotone networks for computing conjunctions , 1976 .

[17]  Noga Alon,et al.  Covering graphs by the minimum number of equivalence relations , 1986, Comb..

[18]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[19]  Vojtech Rödl,et al.  Graph complexity , 1988, Acta Informatica.

[20]  Vojtech Rödl,et al.  Bipartite Coverings of Graphs , 1997, Comb. Probab. Comput..

[21]  F. Chung On the coverings of graphs , 1980 .

[22]  Amano Kazuyuki,et al.  On the Monotone Circuit Complexity of Quadratic Boolean Functions , 2004 .

[23]  Alexander A. Razborov,et al.  Natural Proofs , 1997, J. Comput. Syst. Sci..

[24]  P. Bloniarz THE COMPLEXITY OF MONOTONE BOOLEAN FUNCTIONS AND AN ALGORITHM FOR FINDING SHORTEST PATHS ON A GRAPH , 1980 .

[25]  Kurt Mehlhorn,et al.  Some remarks on Boolean sums , 1979, Acta Informatica.

[26]  Vojtech Rödl,et al.  Pseudorandom sets and explicit constructions of ramsey graphs , 2004 .

[27]  Ingo Wegener,et al.  A new lower bound on the monotone network complexity of Boolean sums , 1980, Acta Informatica.

[28]  P. Erdös Some remarks on the theory of graphs , 1947 .